亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study algorithms for online change-point detection (OCPD), where samples that are potentially heavy-tailed, are presented one at a time and a change in the underlying mean must be detected as early as possible. We present an algorithm based on clipped Stochastic Gradient Descent (SGD), that works even if we only assume that the second moment of the data generating process is bounded. We derive guarantees on worst-case, finite-sample false-positive rate (FPR) over the family of all distributions with bounded second moment. Thus, our method is the first OCPD algorithm that guarantees finite-sample FPR, even if the data is high dimensional and the underlying distributions are heavy-tailed. The technical contribution of our paper is to show that clipped-SGD can estimate the mean of a random vector and simultaneously provide confidence bounds at all confidence values. We combine this robust estimate with a union bound argument and construct a sequential change-point algorithm with finite-sample FPR guarantees. We show empirically that our algorithm works well in a variety of situations, whether the underlying data are heavy-tailed, light-tailed, high dimensional or discrete. No other algorithm achieves bounded FPR theoretically or empirically, over all settings we study simultaneously.

相關內容

The abilities to understand the social interaction behaviors between a vehicle and its surroundings while predicting its trajectory in an urban environment are critical for road safety in autonomous driving. Social interactions are hard to explain because of their uncertainty. In recent years, neural network-based methods have been widely used for trajectory prediction and have been shown to outperform hand-crafted methods. However, these methods suffer from their lack of interpretability. In order to overcome this limitation, we combine the interpretability of a discrete choice model with the high accuracy of a neural network-based model for the task of vehicle trajectory prediction in an interactive environment. We implement and evaluate our model using the INTERACTION dataset and demonstrate the effectiveness of our proposed architecture to explain its predictions without compromising the accuracy.

Rate-splitting multiple access (RSMA) uplink requires optimization of decoding order and power allocation, while decoding order is a discrete variable, and it is very complex to find the optimal decoding order if the number of users is large enough. This letter proposes a low-complexity user pairing-based resource allocation algorithm with the objective of minimizing the maximum latency, which significantly reduces the computational complexity and also achieves similar performance to unpaired uplink RSMA. A closed-form expression for power and bandwidth allocation is first derived, and then a bisection method is used to determine the optimal resource allocation. Finally, the proposed algorithm is compared with unpaired RSMA, paired NOMA and unpaired NOMA. The results demonstrate the effectiveness of the proposed algorithm.

V. Levenshtein first proposed the sequence reconstruction problem in 2001. This problem studies the model where the same sequence from some set is transmitted over multiple channels, and the decoder receives the different outputs. Assume that the transmitted sequence is at distance $d$ from some code and there are at most $r$ errors in every channel. Then the sequence reconstruction problem is to find the minimum number of channels required to recover exactly the transmitted sequence that has to be greater than the maximum intersection between two metric balls of radius $r$, where the distance between their centers is at least $d$. In this paper, we study the sequence reconstruction problem of permutations under the Hamming distance. In this model we define a Cayley graph over the symmetric group, study its properties and find the exact value of the largest intersection of its two metric balls for $d=2r$. Moreover, we give a lower bound on the largest intersection of two metric balls for $d=2r-1$.

Fine-tuning a pre-trained language model (PLM) emerges as the predominant strategy in many natural language processing applications. However, even fine-tuning the PLMs and doing inference are expensive, especially on edge devices with low computing power. Some general approaches (e.g. quantization and distillation) have been widely studied to reduce the compute/memory of PLM fine-tuning, while very few one-shot compression techniques are explored. In this paper, we investigate the neural tangent kernel (NTK)--which reveals the gradient descent dynamics of neural networks--of the multilayer perceptrons (MLP) modules in a PLM and propose to coin a lightweight PLM through NTK-approximating MLP fusion. To achieve this, we reconsider the MLP as a bundle of sub-MLPs, and cluster them into a given number of centroids, which can then be restored as a compressed MLP and surprisingly shown to well approximate the NTK of the original PLM. Extensive experiments of PLM fine-tuning on both natural language understanding (NLU) and generation (NLG) tasks are provided to verify the effectiveness of the proposed method MLP fusion. Our code is available at //github.com/weitianxin/MLP_Fusion.

Machine learning has rapidly evolved during the last decade, achieving expert human performance on notoriously challenging problems such as image classification. This success is partly due to the re-emergence of bio-inspired modern artificial neural networks (ANNs) along with the availability of computation power, vast labelled data and ingenious human-based expert knowledge as well as optimisation approaches that can find the correct configuration (and weights) for these networks. Neuroevolution is a term used for the latter when employing evolutionary algorithms. Most of the works in neuroevolution have focused their attention in a single type of ANNs, named Convolutional Neural Networks (CNNs). Moreover, most of these works have used a single optimisation approach. This work makes a progressive step forward in neuroevolution for vehicle trajectory prediction, referred to as neurotrajectory prediction, where multiple objectives must be considered. To this end, rich ANNs composed of CNNs and Long-short Term Memory Network are adopted. Two well-known and robust Evolutionary Multi-objective Optimisation (EMO) algorithms, NSGA-II and MOEA/D are also adopted. The completely different underlying mechanism of each of these algorithms sheds light on the implications of using one over the other EMO approach in neurotrajectory prediction. In particular, the importance of considering objective scaling is highlighted, finding that MOEA/D can be more adept at focusing on specific objectives whereas, NSGA-II tends to be more invariant to objective scaling. Additionally, certain objectives are shown to be either beneficial or detrimental to finding valid models, for instance, inclusion of a distance feedback objective was considerably detrimental to finding valid models, while a lateral velocity objective was more beneficial.

We introduce a new tensor integration method for time-dependent PDEs that controls the tensor rank of the PDE solution via time-dependent diffeomorphic coordinate transformations. Such coordinate transformations are generated by minimizing the normal component of the PDE operator relative to the tensor manifold that approximates the PDE solution via a convex functional. The proposed method significantly improves upon and may be used in conjunction with the coordinate-adaptive algorithm we recently proposed in JCP (2023) Vol. 491, 112378, which is based on non-convex relaxations of the rank minimization problem and Riemannian optimization. Numerical applications demonstrating the effectiveness of the proposed coordinate-adaptive tensor integration method are presented and discussed for prototype Liouville and Fokker-Planck equations.

Various design settings for in-context learning (ICL), such as the choice and order of the in-context examples, can bias a model toward a particular prediction without being reflective of an understanding of the task. While many studies discuss these design choices, there have been few systematic investigations into categorizing them and mitigating their impact. In this work, we define a typology for three types of label biases in ICL for text classification: vanilla-label bias, context-label bias, and domain-label bias (which we conceptualize and detect for the first time). Our analysis demonstrates that prior label bias calibration methods fall short of addressing all three types of biases. Specifically, domain-label bias restricts LLMs to random-level performance on many tasks regardless of the choice of in-context examples. To mitigate the effect of these biases, we propose a simple bias calibration method that estimates a language model's label bias using random in-domain words from the task corpus. After controlling for this estimated bias when making predictions, our novel domain-context calibration significantly improves the ICL performance of GPT-J and GPT-3 on a wide range of tasks. The gain is substantial on tasks with large domain-label bias (up to 37% in Macro-F1). Furthermore, our results generalize to models with different scales, pretraining methods, and manually-designed task instructions, showing the prevalence of label biases in ICL.

Recommender systems that include some reliability measure of their predictions tend to be more conservative in forecasting, due to their constraint to preserve reliability. This leads to a significant drop in the coverage and novelty that these systems can provide. In this paper, we propose the inclusion of a new term in the learning process of matrix factorization-based recommender systems, called recklessness, which enables the control of the risk level desired when making decisions about the reliability of a prediction. Experimental results demonstrate that recklessness not only allows for risk regulation but also improves the quantity and quality of predictions provided by the recommender system.

We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.

We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.

北京阿比特科技有限公司