亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding the role of regularization is a central question in Statistical Inference. Empirically, well-chosen regularization schemes often dramatically improve the quality of the inferred models by avoiding overfitting of the training data. We consider here the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models. Based on analytical calculations on Gaussian multivariate distributions and numerical experiments on Gaussian and Potts models we study the likelihoods of the training, test, and 'generated data' (with the inferred models) sets as functions of the regularization strengths. We show in particular that, at its maximum, the test likelihood and the 'generated' likelihood, which quantifies the quality of the generated samples, have remarkably close values. The optimal value for the regularization strength is found to be approximately equal to the inverse sum of the squared couplings incoming on sites on the underlying network of interactions. Our results seem largely independent of the structure of the true underlying interactions that generated the data, of the regularization scheme considered, and are valid when small fluctuations of the posterior distribution around the MAP estimator are taken into account. Connections with empirical works on protein models learned from homologous sequences are discussed.

相關內容

In recent years, several models have improved the capacity to generate synthetic tabular datasets. However, such models focus on synthesizing simple columnar tables and are not useable on real-life data with complex structures. This paper puts forward a generic framework to synthesize more complex data structures with composite and nested types. It then proposes one practical implementation, built with causal transformers, for struct (mappings of types) and lists (repeated instances of a type). The results on standard benchmark datasets show that such implementation consistently outperforms current state-of-the-art models both in terms of machine learning utility and statistical similarity. Moreover, it shows very strong results on two complex hierarchical datasets with multiple nesting and sparse data, that were previously out of reach.

The optimal receiver operating characteristic (ROC) curve, giving the maximum probability of detection as a function of the probability of false alarm, is a key information-theoretic indicator of the difficulty of a binary hypothesis testing problem (BHT). It is well known that the optimal ROC curve for a given BHT, corresponding to the likelihood ratio test, is theoretically determined by the probability distribution of the observed data under each of the two hypotheses. In some cases, these two distributions may be unknown or computationally intractable, but independent samples of the likelihood ratio can be observed. This raises the problem of estimating the optimal ROC for a BHT from such samples. The maximum likelihood estimator of the optimal ROC curve is derived, and it is shown to converge to the true optimal ROC curve in the \levy\ metric, as the number of observations tends to infinity. A classical empirical estimator, based on estimating the two types of error probabilities from two separate sets of samples, is also considered. The maximum likelihood estimator is observed in simulation experiments to be considerably more accurate than the empirical estimator, especially when the number of samples obtained under one of the two hypotheses is small. The area under the maximum likelihood estimator is derived; it is a consistent estimator of the true area under the optimal ROC curve.

A class of models that have been widely used are the exponential random graph (ERG) models, which form a comprehensive family of models that include independent and dyadic edge models, Markov random graphs, and many other graph distributions, in addition to allow the inclusion of covariates that can lead to a better fit of the model. Another increasingly popular class of models in statistical network analysis are stochastic block models (SBMs). They can be used for the purpose of grouping nodes into communities or discovering and analyzing a latent structure of a network. The stochastic block model is a generative model for random graphs that tends to produce graphs containing subsets of nodes characterized by being connected to each other, called communities. Many researchers from various areas have been using computational tools to adjust these models without, however, analyzing their suitability for the data of the networks they are studying. The complexity involved in the estimation process and in the goodness-of-fit verification methodologies for these models can be factors that make the analysis of adequacy difficult and a possible discard of one model in favor of another. And it is clear that the results obtained through an inappropriate model can lead the researcher to very wrong conclusions about the phenomenon studied. The purpose of this work is to present a simple methodology, based on Hypothesis Tests, to verify if there is a model specification error for these two cases widely used in the literature to represent complex networks: the ERGM and the SBM. We believe that this tool can be very useful for those who want to use these models in a more careful way, verifying beforehand if the models are suitable for the data under study.

Traditionally, spline or kernel approaches in combination with parametric estimation are used to infer the linear coefficient (fixed effects) in a partially linear mixed-effects model for repeated measurements. Using machine learning algorithms allows us to incorporate complex interaction structures and high-dimensional variables. We employ double machine learning to cope with the nonparametric part of the partially linear mixed-effects model: the nonlinear variables are regressed out nonparametrically from both the linear variables and the response. This adjustment can be performed with any machine learning algorithm, for instance random forests, which allows to take complex interaction terms and nonsmooth structures into account. The adjusted variables satisfy a linear mixed-effects model, where the linear coefficient can be estimated with standard linear mixed-effects techniques. We prove that the estimated fixed effects coefficient converges at the parametric rate, is asymptotically Gaussian distributed, and semiparametrically efficient. Two simulation studies demonstrate that our method outperforms a penalized regression spline approach in terms of coverage. We also illustrate our proposed approach on a longitudinal dataset with HIV-infected individuals. Software code for our method is available in the R-package dmlalg.

Missing values arise in most real-world data sets due to the aggregation of multiple sources and intrinsically missing information (sensor failure, unanswered questions in surveys...). In fact, the very nature of missing values usually prevents us from running standard learning algorithms. In this paper, we focus on the extensively-studied linear models, but in presence of missing values, which turns out to be quite a challenging task. Indeed, the Bayes rule can be decomposed as a sum of predictors corresponding to each missing pattern. This eventually requires to solve a number of learning tasks, exponential in the number of input features, which makes predictions impossible for current real-world datasets. First, we propose a rigorous setting to analyze a least-square type estimator and establish a bound on the excess risk which increases exponentially in the dimension. Consequently, we leverage the missing data distribution to propose a new algorithm, andderive associated adaptive risk bounds that turn out to be minimax optimal. Numerical experiments highlight the benefits of our method compared to state-of-the-art algorithms used for predictions with missing values.

We present energy-based generative flow networks (EB-GFN), a novel probabilistic modeling algorithm for high-dimensional discrete data. Building upon the theory of generative flow networks (GFlowNets), we model the generation process by a stochastic data construction policy and thus amortize expensive MCMC exploration into a fixed number of actions sampled from a GFlowNet. We show how GFlowNets can approximately perform large-block Gibbs sampling to mix between modes. We propose a framework to jointly train a GFlowNet with an energy function, so that the GFlowNet learns to sample from the energy distribution, while the energy learns with an approximate MLE objective with negative samples from the GFlowNet. We demonstrate EB-GFN's effectiveness on various probabilistic modeling tasks.

Graph structured data are abundant in the real world. Among different graph types, directed acyclic graphs (DAGs) are of particular interest to machine learning researchers, as many machine learning models are realized as computations on DAGs, including neural networks and Bayesian networks. In this paper, we study deep generative models for DAGs, and propose a novel DAG variational autoencoder (D-VAE). To encode DAGs into the latent space, we leverage graph neural networks. We propose an asynchronous message passing scheme that allows encoding the computations on DAGs, rather than using existing simultaneous message passing schemes to encode local graph structures. We demonstrate the effectiveness of our proposed D-VAE through two tasks: neural architecture search and Bayesian network structure learning. Experiments show that our model not only generates novel and valid DAGs, but also produces a smooth latent space that facilitates searching for DAGs with better performance through Bayesian optimization.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

A fundamental computation for statistical inference and accurate decision-making is to compute the marginal probabilities or most probable states of task-relevant variables. Probabilistic graphical models can efficiently represent the structure of such complex data, but performing these inferences is generally difficult. Message-passing algorithms, such as belief propagation, are a natural way to disseminate evidence amongst correlated variables while exploiting the graph structure, but these algorithms can struggle when the conditional dependency graphs contain loops. Here we use Graph Neural Networks (GNNs) to learn a message-passing algorithm that solves these inference tasks. We first show that the architecture of GNNs is well-matched to inference tasks. We then demonstrate the efficacy of this inference approach by training GNNs on a collection of graphical models and showing that they substantially outperform belief propagation on loopy graphs. Our message-passing algorithms generalize out of the training set to larger graphs and graphs with different structure.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司