亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The exploration/exploitation trade-off is an inherent challenge in data-driven adaptive control. Though this trade-off has been studied for multi-armed bandits (MAB's) and reinforcement learning for linear systems; it is less well-studied for learning-based control of nonlinear systems. A significant theoretical challenge in the nonlinear setting is that there is no explicit characterization of an optimal controller for a given set of cost and system parameters. We propose the use of a finite-horizon oracle controller with full knowledge of parameters as a reasonable surrogate to optimal controller. This allows us to develop policies in the context of learning-based MPC and MAB's and conduct a control-theoretic analysis using techniques from MPC- and optimization-theory to show these policies achieve low regret with respect to this finite-horizon oracle. Our simulations exhibit the low regret of our policy on a heating, ventilation, and air-conditioning model with partially-unknown cost function.

相關內容

在數(shu)(shu)(shu)學優(you)(you)化(hua)(hua),統計學,計量經濟學,決(jue)策理論(lun),機(ji)器學習和計算神經科學中,代價函(han)數(shu)(shu)(shu),又(you)叫損失(shi)函(han)數(shu)(shu)(shu)或(huo)成本(ben)函(han)數(shu)(shu)(shu),它是(shi)將(jiang)一個或(huo)多(duo)個變量的事(shi)件閾值映射(she)到直觀地表(biao)示(shi)與該(gai)事(shi)件。 一個優(you)(you)化(hua)(hua)問題試圖最小化(hua)(hua)損失(shi)函(han)數(shu)(shu)(shu)。 目(mu)標(biao)函(han)數(shu)(shu)(shu)是(shi)損失(shi)函(han)數(shu)(shu)(shu)或(huo)其負值,在這種情況(kuang)下它將(jiang)被最大化(hua)(hua)。

New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies.

Class incremental learning (CIL) is the process of continually learning new object classes from incremental data while not forgetting past learned classes. While the common method for evaluating CIL algorithms is based on average test accuracy for all learned classes, we argue that maximizing accuracy alone does not necessarily lead to effective CIL algorithms. In this paper, we experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning and propose a new analysis method. Our experiments show that most state-of-the-art algorithms prioritize high stability and do not significantly change the learned representation, and sometimes even learn a representation of lower quality than a naive baseline. However, we observe that these algorithms can still achieve high test accuracy because they learn a classifier that is closer to the optimal classifier. We also found that the base model learned in the first task varies in representation quality across different algorithms, and changes in the final performance were observed when each algorithm was trained under similar representation quality of the base model. Thus, we suggest that representation-level evaluation is an additional recipe for more objective evaluation and effective development of CIL algorithms.

The prediction of traffic flow is a challenging yet crucial problem in spatial-temporal analysis, which has recently gained increasing interest. In addition to spatial-temporal correlations, the functionality of urban areas also plays a crucial role in traffic flow prediction. However, the exploration of regional functional attributes mainly focuses on adding additional topological structures, ignoring the influence of functional attributes on regional traffic patterns. Different from the existing works, we propose a novel module named POI-MetaBlock, which utilizes the functionality of each region (represented by Point of Interest distribution) as metadata to further mine different traffic characteristics in areas with different functions. Specifically, the proposed POI-MetaBlock employs a self-attention architecture and incorporates POI and time information to generate dynamic attention parameters for each region, which enables the model to fit different traffic patterns of various areas at different times. Furthermore, our lightweight POI-MetaBlock can be easily integrated into conventional traffic flow prediction models. Extensive experiments demonstrate that our module significantly improves the performance of traffic flow prediction and outperforms state-of-the-art methods that use metadata.

We study the problem of semi-supervised learning with Graph Neural Networks (GNNs) in an active learning setup. We propose GraphPart, a novel partition-based active learning approach for GNNs. GraphPart first splits the graph into disjoint partitions and then selects representative nodes within each partition to query. The proposed method is motivated by a novel analysis of the classification error under realistic smoothness assumptions over the graph and the node features. Extensive experiments on multiple benchmark datasets demonstrate that the proposed method outperforms existing active learning methods for GNNs under a wide range of annotation budget constraints. In addition, the proposed method does not introduce additional hyperparameters, which is crucial for model training, especially in the active learning setting where a labeled validation set may not be available.

Graph search planning algorithms for navigation typically rely heavily on heuristics to efficiently plan paths. As a result, while such approaches require no training phase and can directly plan long horizon paths, they often require careful hand designing of informative heuristic functions. Recent works have started bypassing hand designed heuristics by using machine learning to learn heuristic functions that guide the search algorithm. While these methods can learn complex heuristic functions from raw input, they i) require a significant training phase and ii) do not generalize well to new maps and longer horizon paths. Our contribution is showing that instead of learning a global heuristic estimate, we can define and learn local heuristics which results in a significantly smaller learning problem and improves generalization. We show that using such local heuristics can reduce node expansions by 2-20x while maintaining bounded suboptimality, are easy to train, and generalize to new maps & long horizon plans.

Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: 1) Conventional GP inference scales $O(N^{3})$ with respect to the number of observations; 2) Updating a GP model sequentially is not trivial; and 3) Covariance kernels typically enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data. To demonstrate the utility of our proposed online Gaussian process mixture-of-experts approach in applied settings, we show that we can sucessfully implement an optimization algorithm using online Gaussian process bandits.

We study Markov decision processes (MDPs), where agents have direct control over when and how they gather information, as formalized by action-contingent noiselessly observable MDPs (ACNO-MPDs). In these models, actions consist of two components: a control action that affects the environment, and a measurement action that affects what the agent can observe. To solve ACNO-MDPs, we introduce the act-then-measure (ATM) heuristic, which assumes that we can ignore future state uncertainty when choosing control actions. We show how following this heuristic may lead to shorter policy computation times and prove a bound on the performance loss incurred by the heuristic. To decide whether or not to take a measurement action, we introduce the concept of measuring value. We develop a reinforcement learning algorithm based on the ATM heuristic, using a Dyna-Q variant adapted for partially observable domains, and showcase its superior performance compared to prior methods on a number of partially-observable environments.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司