亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph search planning algorithms for navigation typically rely heavily on heuristics to efficiently plan paths. As a result, while such approaches require no training phase and can directly plan long horizon paths, they often require careful hand designing of informative heuristic functions. Recent works have started bypassing hand designed heuristics by using machine learning to learn heuristic functions that guide the search algorithm. While these methods can learn complex heuristic functions from raw input, they i) require a significant training phase and ii) do not generalize well to new maps and longer horizon paths. Our contribution is showing that instead of learning a global heuristic estimate, we can define and learn local heuristics which results in a significantly smaller learning problem and improves generalization. We show that using such local heuristics can reduce node expansions by 2-20x while maintaining bounded suboptimality, are easy to train, and generalize to new maps & long horizon plans.

相關內容

Peer-to-peer systems are the most resilient form of distributed computing, but the design of robust protocols for their coordination is difficult. This makes it hard to specify and reason about global behaviour of such systems. This paper presents swarm protocols to specify such systems from a global viewpoint. Swarm protocols are projected to machines, that is local specifications of peers. We take inspiration from behavioural types with a key difference: peers communicate through an event notification mechanism rather than through point-to-point message passing. Our goal is to adhere to the principles of local-first software where network devices collaborate on a common task while retaining full autonomy: every participating device can locally make progress at all times, not encumbered by unavailability of other devices or network connections. This coordination-free approach leads to inconsistencies that may emerge during computations. Our main result shows that under suitable well-formedness conditions for swarm protocols consistency is eventually recovered and the locally observable behaviour of conforming machines will eventually match the global specification. The model we propose elaborates on an existing industrial platform and provides the basis for tool support (sketched here and fully described in a companion artifact paper), wherefore we consider this work to be a viable step towards reasoning about local-first and peer-to-peer software systems.

Autonomous agents face the challenge of coordinating multiple tasks (perception, motion planning, controller) which are computationally expensive on a single onboard computer. To utilize the onboard processing capacity optimally, it is imperative to arrive at computationally efficient algorithms for global path planning. In this work, it is attempted to reduce the processing time for global path planning in dynamically evolving polygonal maps. In dynamic environments, maps may not remain valid for long. Hence it is of utmost importance to obtain the shortest path quickly in an ever-changing environment. To address this, an existing rapid path-finding algorithm, the Minimal Construct was used. This algorithm discovers only a necessary portion of the Visibility Graph around obstacles and computes collision tests only for lines that seem heuristically promising. Simulations show that this algorithm finds shortest paths faster than traditional grid-based A* searches in most cases, resulting in smoother and shorter paths even in dynamic environments.

In addition to relevance, diversity is an important yet less studied performance metric of cross-modal image retrieval systems, which is critical to user experience. Existing solutions for diversity-aware image retrieval either explicitly post-process the raw retrieval results from standard retrieval systems or try to learn multi-vector representations of images to represent their diverse semantics. However, neither of them is good enough to balance relevance and diversity. On the one hand, standard retrieval systems are usually biased to common semantics and seldom exploit diversity-aware regularization in training, which makes it difficult to promote diversity by post-processing. On the other hand, multi-vector representation methods are not guaranteed to learn robust multiple projections. As a result, irrelevant images and images of rare or unique semantics may be projected inappropriately, which degrades the relevance and diversity of the results generated by some typical algorithms like top-k. To cope with these problems, this paper presents a new method called CoLT that tries to generate much more representative and robust representations for accurately classifying images. Specifically, CoLT first extracts semantics-aware image features by enhancing the preliminary representations of an existing one-to-one cross-modal system with semantics-aware contrastive learning. Then, a transformer-based token classifier is developed to subsume all the features into their corresponding categories. Finally, a post-processing algorithm is designed to retrieve images from each category to form the final retrieval result. Extensive experiments on two real-world datasets Div400 and Div150Cred show that CoLT can effectively boost diversity, and outperforms the existing methods as a whole (with a higher F1 score).

My research objective is to explicitly bridge the gap between high computational performance and low power dissipation of robot on-board hardware by designing a bio-inspired tapered whisker neuromorphic computing (also called reservoir computing) system for offroad robot environment perception and navigation, that centres the interaction between a robot's body and its environment. Mobile robots performing tasks in unknown environments need to traverse a variety of complex terrains, and they must be able to reliably and quickly identify and characterize these terrains to avoid getting into potentially challenging or catastrophic circumstances. To solve this problem, I drew inspiration from animals like rats and seals, just relying on whiskers to perceive surroundings information and survive in dark and narrow environments. Additionally, I looked to the human cochlear which can separate different frequencies of sound. Based on these insights, my work addresses this need by exploring the physical whisker-based reservoir computing for quick and cost-efficient mobile robots environment perception and navigation step by step. This research could help us understand how the compliance of the biological counterparts helps robots to dynamically interact with the environment and provides a new solution compared with current methods for robot environment perception and navigation with limited computational resources, such as Mars.

For simulation-based systems, finding a set of test cases with the least cost by exploring multiple goals is a complex task. Domain-specific optimization goals (e.g. maximize output variance) are useful for guiding the rapid selection of test cases via mutation. But evaluating the selected test cases via mutation (that can distinguish the current program from the mutated systems) is a different goal to domain-specific optimizations. While the optimization goals can be used to guide the mutation analysis, that guidance should be viewed as a weak indicator since it can hurt the mutation effectiveness goals by focusing too much on the optimization goals. Based on the above, this paper proposes DoLesS (Domination with Least Squares Approximation) that selects the minimal and effective test cases by averaging over a coarse-grained grid of the information gained from multiple optimizations goals. DoLesS applies an inverted least squares approximation approach to find a minimal set of tests that can distinguish better from worse parts of the optimization goals. When tested on multiple simulation-based systems, DoLesS performs as well or even better as the prior state-of-the-art, while running 80-360 times faster on average (seconds instead of hours).

Graph Transformer is gaining increasing attention in the field of machine learning and has demonstrated state-of-the-art performance on benchmarks for graph representation learning. However, as current implementations of Graph Transformer primarily focus on learning representations of small-scale graphs, the quadratic complexity of the global self-attention mechanism presents a challenge for full-batch training when applied to larger graphs. Additionally, conventional sampling-based methods fail to capture necessary high-level contextual information, resulting in a significant loss of performance. In this paper, we introduce the Hierarchical Scalable Graph Transformer (HSGT) as a solution to these challenges. HSGT successfully scales the Transformer architecture to node representation learning tasks on large-scale graphs, while maintaining high performance. By utilizing graph hierarchies constructed through coarsening techniques, HSGT efficiently updates and stores multi-scale information in node embeddings at different levels. Together with sampling-based training methods, HSGT effectively captures and aggregates multi-level information on the hierarchical graph using only Transformer blocks. Empirical evaluations demonstrate that HSGT achieves state-of-the-art performance on large-scale benchmarks with graphs containing millions of nodes with high efficiency.

Model-based approaches to reinforcement learning (MBRL) exhibit favorable performance in practice, but their theoretical guarantees in large spaces are mostly restricted to the setting when transition model is Gaussian or Lipschitz, and demands a posterior estimate whose representational complexity grows unbounded with time. In this work, we develop a novel MBRL method (i) which relaxes the assumptions on the target transition model to belong to a generic family of mixture models; (ii) is applicable to large-scale training by incorporating a compression step such that the posterior estimate consists of a Bayesian coreset of only statistically significant past state-action pairs; and (iii) exhibits a sublinear Bayesian regret. To achieve these results, we adopt an approach based upon Stein's method, which, under a smoothness condition on the constructed posterior and target, allows distributional distance to be evaluated in closed form as the kernelized Stein discrepancy (KSD). The aforementioned compression step is then computed in terms of greedily retaining only those samples which are more than a certain KSD away from the previous model estimate. Experimentally, we observe that this approach is competitive with several state-of-the-art RL methodologies, and can achieve up-to 50 percent reduction in wall clock time in some continuous control environments.

Accurately estimating the probability of failure for safety-critical systems is important for certification. Estimation is often challenging due to high-dimensional input spaces, dangerous test scenarios, and computationally expensive simulators; thus, efficient estimation techniques are important to study. This work reframes the problem of black-box safety validation as a Bayesian optimization problem and introduces an algorithm, Bayesian safety validation, that iteratively fits a probabilistic surrogate model to efficiently predict failures. The algorithm is designed to search for failures, compute the most-likely failure, and estimate the failure probability over an operating domain using importance sampling. We introduce a set of three acquisition functions that focus on reducing uncertainty by covering the design space, optimizing the analytically derived failure boundaries, and sampling the predicted failure regions. Mainly concerned with systems that only output a binary indication of failure, we show that our method also works well in cases where more output information is available. Results show that Bayesian safety validation achieves a better estimate of the probability of failure using orders of magnitude fewer samples and performs well across various safety validation metrics. We demonstrate the algorithm on three test problems with access to ground truth and on a real-world safety-critical subsystem common in autonomous flight: a neural network-based runway detection system. This work is open sourced and currently being used to supplement the FAA certification process of the machine learning components for an autonomous cargo aircraft.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Policy gradient methods are often applied to reinforcement learning in continuous multiagent games. These methods perform local search in the joint-action space, and as we show, they are susceptable to a game-theoretic pathology known as relative overgeneralization. To resolve this issue, we propose Multiagent Soft Q-learning, which can be seen as the analogue of applying Q-learning to continuous controls. We compare our method to MADDPG, a state-of-the-art approach, and show that our method achieves better coordination in multiagent cooperative tasks, converging to better local optima in the joint action space.

北京阿比特科技有限公司