We address the resilience of future 6G MIMO communications by considering an uplink scenario where multiple legitimate transmitters try to communicate with a base station in the presence of an adversarial jammer. The jammer possesses full knowledge about the system and the physical parameters of the legitimate link, while the base station only knows the UL-channels and the angle-of-arrival (AoA) of the jamming signals. Furthermore, the legitimate transmitters are oblivious to the fact that jamming takes place, thus the burden of guaranteeing resilience falls on the receiver. For this case we derive one optimal jamming strategy that aims to minimize the rate of the strongest user and multiple receive strategies, one based on a lower bound on the achievable signal-to-interference-to-noise-ratio (SINR), one based on a zero-forcing (ZF) design, and one based on a minimum SINR constraint. Numerical studies show that the proposed anti-jamming approaches ensure that the sum rate of the system is much higher than without protection, even when the jammer has considerably more transmit power and even if the jamming signals come from the same direction as those of the legitimate users.
We consider a fully-connected wireless gossip network which consists of a source and $n$ receiver nodes. The source updates itself with a Poisson process and also sends updates to the nodes as Poisson arrivals. Upon receiving the updates, the nodes update their knowledge about the source. The nodes gossip the data among themselves in the form of Poisson arrivals to disperse their knowledge about the source. The total gossiping rate is bounded by a constraint. The goal of the network is to be as timely as possible with the source. We propose a scheme which we coin \emph{age sense updating multiple access in networks (ASUMAN)}, which is a distributed opportunistic gossiping scheme, where after each time the source updates itself, each node waits for a time proportional to its current age and broadcasts a signal to the other nodes of the network. This allows the nodes in the network which have higher age to remain silent and only the low-age nodes to gossip, thus utilizing a significant portion of the constrained total gossip rate. We calculate the average age for a typical node in such a network with symmetric settings, and show that the theoretical upper bound on the age scales as $O(1)$. ASUMAN, with an average age of $O(1)$, offers significant gains compared to a system where the nodes just gossip blindly with a fixed update rate, in which case the age scales as $O(\log n)$. Further, we analyzed the performance of ASUMAN for fractional, finitely connected, sublinear and hierarchical cluster networks. Finally, we show that the $O(1)$ age scaling can be extended to asymmetric settings as well. We give an example of power law arrivals, where nodes' ages scale differently but follow the $O(1)$ bound.
In this letter, we investigate the signal-to-interference-plus-noise-ratio (SINR) maximization problem in a multi-user massive multiple-input-multiple-output (massive MIMO) system enabled with multiple reconfigurable intelligent surfaces (RISs). We examine two zero-forcing (ZF) beamforming approaches for interference management namely BS-UE-ZF and BS-RIS-ZF that enforce the interference to zero at the users (UEs) and the RISs, respectively.Then, for each case, we resolve the SINR maximization problem to find the optimal phase shifts of the elements of the RISs. Also, we evaluate the asymptotic expressions for the optimal phase shifts and the maximum SINRs when the number of the base station (BS) antennas tends to infinity. We show that if the channels of the RIS elements are independent and the number of the BS antennas tends to infinity, random phase shifts achieve the maximum SINR using the BS-UE-ZF beamforming approach. The simulation results illustrate that by employing the BS-RIS-ZF beamforming approach, the asymptotic expressions of the phase shifts and maximum SINRs achieve the rate obtained by the optimal phase shifts even for a small number of the BS antennas.
In this paper, we propose a robust secure transmission scheme for an active reconfigurable intelligent surface (RIS) enabled symbiotic radio (SR) system in the presence of multiple eavesdroppers (Eves). In the considered system, the active RIS is adopted to enable the secure transmission of primary signals from the primary transmitter to multiple primary users in a multicasting manner, and simultaneously achieve its own information delivery to the secondary user by riding over the primary signals. Taking into account the imperfect channel state information (CSI) related with Eves, we formulate the system power consumption minimization problem by optimizing the transmit beamforming and reflection beamforming for the bounded and statistical CSI error models, taking the worst-case SNR constraints and the SNR outage probability constraints at the Eves into considerations, respectively. Specifically, the S-Procedure and the Bernstein-Type Inequality are implemented to approximately transform the worst-case SNR and the SNR outage probability constraints into tractable forms, respectively. After that, the formulated problems can be solved by the proposed alternating optimization (AO) algorithm with the semi-definite relaxation and sequential rank-one constraint relaxation techniques. Numerical results show that the proposed active RIS scheme can reduce up to 27.0% system power consumption compared to the passive RIS.
In this article, physical layer security (PLS) in an intelligent reflecting surface (IRS) assisted multiple-input multiple-output multiple antenna eavesdropper (MIMOME) system is studied. In particular, we consider a practical scenario without instantaneous channel state information (CSI) of the eavesdropper and assume that the eavesdropping channel is a Rayleigh channel. To reduce the complexity of currently available IRS-assisted PLS schemes, we propose a low-complexity deep learning (DL) based approach to design transmitter beamforming and IRS jointly, where the precoding vector and phase shift matrix are designed to minimize the secrecy outage probability. Simulation results demonstrate that the proposed DL-based approach can achieve a similar performance of that with conventional alternating optimization (AO) algorithms for a significant reduction in the computational complexity.
With the development of innovative applications that require high reliability and low latency, ultra-reliable and low latency communications become critical for wireless networks. In this paper, the second-order coding rate of the coherent quasi-static Rayleigh-product MIMO channel is investigated. We consider the coding rate within O(1/\sqrt(Mn)) of the capacity, where M and n denote the number of transmit antennas and the blocklength, respectively, and derive the closed-form upper and lower bounds for the optimal average error probability. This analysis is achieved by setting up a central limit theorem (CLT) for the mutual information density (MID) with the assumption that the block-length, the number of the scatterers, and the number of the antennas go to infinity with the same pace. To obtain more physical insights, the high and low SNR approximations for the upper and lower bounds are also given. One interesting observation is that rank-deficiency degrades the performance of MIMO systems with FBL and the fundamental limits of the Rayleigh-product channel approaches those of the single Rayleigh case when the number of scatterers approaches infinity. Finally, the fitness of the CLT and the gap between the derived bounds and the performance of practical LDPC coding are illustrated by simulations.
Massive connectivity for extra large-scale multi-input multi-output (XL-MIMO) systems is a challenging issue due to the near-field access channels and the prohibitive cost. In this paper, we propose an uplink grant-free massive access scheme for XL-MIMO systems, in which a mixed-analog-to-digital converters (ADC) architecture is adopted to strike the right balance between access performance and power consumption. By exploiting the spatial-domain structured sparsity and the piecewise angular-domain cluster sparsity of massive access channels, a compressive sensing (CS)-based two-stage orthogonal approximate message passing algorithm is proposed to efficiently solve the joint activity detection and channel estimation problem. Particularly, high-precision quantized measurements are leveraged to perform accurate hyper-parameter estimation, thereby facilitating the activity detection. Moreover, we adopt a subarray-wise estimation strategy to overcome the severe angular-domain energy dispersion problem which is caused by the near-field effect in XL-MIMO channels. Simulation results verify the superiority of our proposed algorithm over state-of-the-art CS algorithms for massive access based on XL-MIMO with mixed-ADC architectures.
In this paper, a novel transmissive reconfigurable intelligent surface (RIS) enabled uplink communication system with orthogonal frequency division multiple access (OFDMA) is investigated. Specifically, a non-conventional receiver architecture equipped with a single receiving horn antenna and a transmissive RIS is first proposed, and a far-near field channel model based on planar waves and spherical waves is also given. Then, in order to maximize the system sum-rate of uplink communications, we formulate a joint optimization problem over subcarrier allocation, power allocation and RIS transmissive coefficient design while taking account of user quality-of-service (QoS) constraint. Due to the coupling of optimization variables, the optimization problem is non-convex, so it is challenging to solve it directly. In order to tackle this problem, the alternating optimization (AO) algorithm is utilized to decouple the optimization variables and divide the problem into two sub-problems to solve. First, the problem of joint subcarrier allocation and power allocation is solved via the Lagrangian dual decomposition method. Then, the RIS transmissive coefficient design scheme can be obtained by applying difference-of-convex (DC) programming, successive convex approximation (SCA) and penalty function methods. Finally, the two sub-problems are iterated alternately until convergence is achieved. Numerical results verify that the proposed algorithm has good convergence performance and can improve sum-rate of the proposed system compared with other benchmark algorithms.
Communication over a classical multiple-access channel (MAC) with entanglement resources is considered, whereby two transmitters share entanglement resources a priori before communication begins. Leditzki et al. (2020) presented an example of a classical MAC, defined in terms of a pseudo telepathy game, such that the sum rate with entangled transmitters is strictly higher than the best achievable sum rate without such resources. Here, we derive a full characterization of the capacity region for the general MAC with entangled transmitters, and show that the previous result can be obtained as a special case. A single letter formula is established involving auxiliary variables and ancillas of finite dimensions. This, in turn, leads to a sufficient entanglement rate to achieve the rate region. Furthermore, it has long been known that the capacity region of the classical MAC under a message-average error criterion can be strictly larger than with a maximal error criterion (Dueck, 1978). We observe that given entanglement resources, the regions coincide.
In this paper, we investigate the coexistence of a single cell massive MIMO communication system with a MIMO radar. We consider the case where the massive MIMO BS is aware of the radar's existence and treats it as a non-serviced user, but the radar is unaware of the communication system's existence and treats the signals transmitted by both the BS and the communication users as noise. Using results from random matrix theory, we derive the rates achievable by the communication system and the radar. We then use these expressions to obtain the achievable rate regions for the proposed joint radar and communications system. We observe that due to the availability of a large number of degrees of freedom at the mMIMO BS, results in minimal interference even without co-design. Finally we corroborate our findings via detailed numerical simulations and verify the validity of the results derived previously under different settings.
The K-receiver wiretap channel is a channel model where a transmitter broadcasts K independent messages to K intended receivers while keeping them secret from an eavesdropper. The capacity region of the K-receiver multiple-input multiple-output (MIMO) wiretap channel has been characterized by using dirty-paper coding and stochastic encoding. However, K factorial encoding orders may need to be enumerated to evaluate the capacity region, which makes the problem intractable. In addition, even though the capacity region is known, the optimal signaling to achieve the capacity region is unknown. In this paper, we determine one optimal encoding order to achieve every point on the capacity region, and thus reduce the encoding complexity K factorial times. We prove that the optimal decoding order for the K-receiver MIMO wiretap channel is the same as that for the MIMO broadcast channel without secrecy. To be specific, the descending weight ordering in the weighted sum-rate (WSR) maximization problem determines the optimal encoding order. Next, to reach the border of the secrecy capacity region, we form a WSR maximization problem and apply the block successive maximization method to solve this nonconvex problem and find the input covariance matrices corresponding to each message. Numerical results are used to verify the optimality of the encoding order and to demonstrate the efficacy of the proposed signaling design.