亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce KorMedMCQA, the first Korean multiple-choice question answering (MCQA) benchmark derived from Korean healthcare professional licensing examinations, covering from the year 2012 to year 2023. This dataset consists of a selection of questions from the license examinations for doctors, nurses, and pharmacists, featuring a diverse array of subjects. We conduct baseline experiments on various large language models, including proprietary/open-source, multilingual/Korean-additional pretrained, and clinical context pretrained models, highlighting the potential for further enhancements. We make our data publicly available on HuggingFace (//huggingface.co/datasets/sean0042/KorMedMCQA) and provide a evaluation script via LM-Harness, inviting further exploration and advancement in Korean healthcare environments.

相關內容

自動問答(Question Answering, QA)是指利用計算機自動回答用戶所提出的問題以滿足用戶知識需求的任務。不同于現有搜索引擎,問答系統是信息服務的一種高級形式,系統返回用戶的不再是基于關鍵詞匹配排序的文檔列表,而是精準的自然語言答案。近年來,隨著人工智能的飛速發展,自動問答已經成為倍受關注且發展前景廣泛的研究方向。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Many distributed training techniques like Parameter Server and AllReduce have been proposed to take advantage of the increasingly large data and rich features. However, stragglers frequently occur in distributed training due to resource contention and hardware heterogeneity, which significantly hampers the training efficiency. Previous works only address part of the stragglers and could not adaptively solve various stragglers in practice. Additionally, it is challenging to use a systematic framework to address all stragglers because different stragglers require diverse data allocation and fault-tolerance mechanisms. Therefore, this paper proposes a unified distributed training framework called AntDT (Ant Distributed Training Framework) to adaptively solve the straggler problems. Firstly, the framework consists of four components, including the Stateful Dynamic Data Sharding service, Monitor, Controller, and Agent. These components work collaboratively to efficiently distribute workloads and provide a range of pre-defined straggler mitigation methods with fault tolerance, thereby hiding messy details of data allocation and fault handling. Secondly, the framework provides a high degree of flexibility, allowing for the customization of straggler mitigation solutions based on the specific circumstances of the cluster. Leveraging this flexibility, we introduce two straggler mitigation solutions, namely AntDT-ND for non-dedicated clusters and AntDT-DD for dedicated clusters, as practical examples to resolve various types of stragglers at Ant Group. Justified by our comprehensive experiments and industrial deployment statistics, AntDT outperforms other SOTA methods more than 3x in terms of training efficiency. Additionally, in Alipay's homepage recommendation scenario, using AntDT reduces the training duration of the ranking model from 27.8 hours to just 5.4 hours.

Clients often partner with AI experts to develop AI applications tailored to their needs. In these partnerships, careful planning and clear communication are critical, as inaccurate or incomplete specifications can result in misaligned model characteristics, expensive reworks, and potential friction between collaborators. Unfortunately, given the complexity of requirements ranging from functionality, data, and governance, effective guidelines for collaborative specification of requirements in client-AI expert collaborations are missing. In this work, we introduce AINeedsPlanner, a workbook that AI experts and clients can use to facilitate effective interchange and clear specifications. The workbook is based on (1) an interview of 10 completed AI application project teams, which identifies and characterizes steps in AI application planning and (2) a study with 12 AI experts, which defines a taxonomy of AI experts' information needs and dimensions that affect the information needs. Finally, we demonstrate the workbook's utility with two case studies in real-world settings.

Programming instructors often conduct collaborative learning activities, like Peer Instruction, to foster a deeper understanding in students and enhance their engagement with learning. These activities, however, may not always yield productive outcomes due to the diversity of student mental models and their ineffective collaboration. In this work, we introduce VizGroup, an AI-assisted system that enables programming instructors to easily oversee students' real-time collaborative learning behaviors during large programming courses. VizGroup leverages Large Language Models (LLMs) to recommend event specifications for instructors so that they can simultaneously track and receive alerts about key correlation patterns between various collaboration metrics and ongoing coding tasks. We evaluated VizGroup with 12 instructors using a dataset collected from a Peer Instruction activity that was conducted in a large programming lecture. The results showed that compared to a version of VizGroup without the suggested units, VizGroup with suggested units helped instructors create additional monitoring units on previously undetected patterns on their own, covered a more diverse range of metrics, and influenced the participants' following notification creation strategies.

Equity in AI for healthcare is crucial due to its direct impact on human well-being. Despite advancements in 2D medical imaging fairness, the fairness of 3D models remains underexplored, hindered by the small sizes of 3D fairness datasets. Since 3D imaging surpasses 2D imaging in SOTA clinical care, it is critical to understand the fairness of these 3D models. To address this research gap, we conduct the first comprehensive study on the fairness of 3D medical imaging models across multiple protected attributes. Our investigation spans both 2D and 3D models and evaluates fairness across five architectures on three common eye diseases, revealing significant biases across race, gender, and ethnicity. To alleviate these biases, we propose a novel fair identity scaling (FIS) method that improves both overall performance and fairness, outperforming various SOTA fairness methods. Moreover, we release Harvard-FairVision, the first large-scale medical fairness dataset with 30,000 subjects featuring both 2D and 3D imaging data and six demographic identity attributes. Harvard-FairVision provides labels for three major eye disorders affecting about 380 million people worldwide, serving as a valuable resource for both 2D and 3D fairness learning. Our code and dataset are publicly accessible at \url{//ophai.hms.harvard.edu/datasets/harvard-fairvision30k}.

Job recommendation aims to provide potential talents with suitable job descriptions (JDs) consistent with their career trajectory, which plays an essential role in proactive talent recruitment. In real-world management scenarios, the available JD-user records always consist of JDs, user profiles, and click data, in which the user profiles are typically summarized as the user's skill distribution for privacy reasons. Although existing sophisticated recommendation methods can be directly employed, effective recommendation still has challenges considering the information deficit of JD itself and the natural heterogeneous gap between JD and user profile. To address these challenges, we proposed a novel skill-aware recommendation model based on the designed semantic-enhanced transformer to parse JDs and complete personalized job recommendation. Specifically, we first model the relative items of each JD and then adopt an encoder with the local-global attention mechanism to better mine the intra-job and inter-job dependencies from JD tuples. Moreover, we adopt a two-stage learning strategy for skill-aware recommendation, in which we utilize the skill distribution to guide JD representation learning in the recall stage, and then combine the user profiles for final prediction in the ranking stage. Consequently, we can embed rich contextual semantic representations for learning JDs, while skill-aware recommendation provides effective JD-user joint representation for click-through rate (CTR) prediction. To validate the superior performance of our method for job recommendation, we present a thorough empirical analysis of large-scale real-world and public datasets to demonstrate its effectiveness and interpretability.

3D Gaussian Splatting (GS) have achieved considerable improvement over Neural Radiance Fields in terms of 3D fitting fidelity and rendering speed. However, this unstructured representation with scattered Gaussians poses a significant challenge for generative modeling. To address the problem, we introduce GaussianCube, a structured GS representation that is both powerful and efficient for generative modeling. We achieve this by first proposing a modified densification-constrained GS fitting algorithm which can yield high-quality fitting results using a fixed number of free Gaussians, and then re-arranging the Gaussians into a predefined voxel grid via Optimal Transport. The structured grid representation allows us to use standard 3D U-Net as our backbone in diffusion generative modeling without elaborate designs. Extensive experiments conducted on ShapeNet and OmniObject3D show that our model achieves state-of-the-art generation results both qualitatively and quantitatively, underscoring the potential of GaussianCube as a powerful and versatile 3D representation.

Large Language Models (LLMs) provide a possibility to make a great breakthrough in medicine. The establishment of a standardized medical benchmark becomes a fundamental cornerstone to measure progression. However, medical environments in different regions have their local characteristics, e.g., the ubiquity and significance of traditional Chinese medicine within China. Therefore, merely translating English-based medical evaluation may result in \textit{contextual incongruities} to a local region. To solve the issue, we propose a localized medical benchmark called CMB, a Comprehensive Medical Benchmark in Chinese, designed and rooted entirely within the native Chinese linguistic and cultural framework. While traditional Chinese medicine is integral to this evaluation, it does not constitute its entirety. Using this benchmark, we have evaluated several prominent large-scale LLMs, including ChatGPT, GPT-4, dedicated Chinese LLMs, and LLMs specialized in the medical domain. We hope this benchmark provide first-hand experience in existing LLMs for medicine and also facilitate the widespread adoption and enhancement of medical LLMs within China. Our data and code are publicly available at //github.com/FreedomIntelligence/CMB.

In recent advancements in medical image analysis, Convolutional Neural Networks (CNN) and Vision Transformers (ViT) have set significant benchmarks. While the former excels in capturing local features through its convolution operations, the latter achieves remarkable global context understanding by leveraging self-attention mechanisms. However, both architectures exhibit limitations in efficiently modeling long-range dependencies within medical images, which is a critical aspect for precise segmentation. Inspired by the Mamba architecture, known for its proficiency in handling long sequences and global contextual information with enhanced computational efficiency as a State Space Model (SSM), we propose Mamba-UNet, a novel architecture that synergizes the U-Net in medical image segmentation with Mamba's capability. Mamba-UNet adopts a pure Visual Mamba (VMamba)-based encoder-decoder structure, infused with skip connections to preserve spatial information across different scales of the network. This design facilitates a comprehensive feature learning process, capturing intricate details and broader semantic contexts within medical images. We introduce a novel integration mechanism within the VMamba blocks to ensure seamless connectivity and information flow between the encoder and decoder paths, enhancing the segmentation performance. We conducted experiments on publicly available ACDC MRI Cardiac segmentation dataset, and Synapse CT Abdomen segmentation dataset. The results show that Mamba-UNet outperforms several types of UNet in medical image segmentation under the same hyper-parameter setting. The source code and baseline implementations are available.

In recent years, there have been significant advancements in 3D reconstruction and dense RGB-D SLAM systems. One notable development is the application of Neural Radiance Fields (NeRF) in these systems, which utilizes implicit neural representation to encode 3D scenes. This extension of NeRF to SLAM has shown promising results. However, the depth images obtained from consumer-grade RGB-D sensors are often sparse and noisy, which poses significant challenges for 3D reconstruction and affects the accuracy of the representation of the scene geometry. Moreover, the original hierarchical feature grid with occupancy value is inaccurate for scene geometry representation. Furthermore, the existing methods select random pixels for camera tracking, which leads to inaccurate localization and is not robust in real-world indoor environments. To this end, we present NeSLAM, an advanced framework that achieves accurate and dense depth estimation, robust camera tracking, and realistic synthesis of novel views. First, a depth completion and denoising network is designed to provide dense geometry prior and guide the neural implicit representation optimization. Second, the occupancy scene representation is replaced with Signed Distance Field (SDF) hierarchical scene representation for high-quality reconstruction and view synthesis. Furthermore, we also propose a NeRF-based self-supervised feature tracking algorithm for robust real-time tracking. Experiments on various indoor datasets demonstrate the effectiveness and accuracy of the system in reconstruction, tracking quality, and novel view synthesis.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司