亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Imagine if AI decision-support tools not only complemented our ability to make accurate decisions, but also improved our skills, boosted collaboration, and elevated the joy we derive from our tasks. Despite the potential to optimize a broad spectrum of such human-centric objectives, the design of current AI tools remains focused on decision accuracy alone. We propose offline reinforcement learning (RL) as a general approach for modeling human-AI decision-making to optimize human-AI interaction for diverse objectives. RL can optimize such objectives by tailoring decision support, providing the right type of assistance to the right person at the right time. We instantiated our approach with two objectives: human-AI accuracy on the decision-making task and human learning about the task and learned decision support policies from previous human-AI interaction data. We compared the optimized policies against several baselines in AI-assisted decision-making. Across two experiments (N=316 and N=964), our results demonstrated that people interacting with policies optimized for accuracy achieve significantly better accuracy -- and even human-AI complementarity -- compared to those interacting with any other type of AI support. Our results further indicated that human learning was more difficult to optimize than accuracy, with participants who interacted with learning-optimized policies showing significant learning improvement only at times. Our research (1) demonstrates offline RL to be a promising approach to model human-AI decision-making, leading to policies that may optimize human-centric objectives and provide novel insights about the AI-assisted decision-making space, and (2) emphasizes the importance of considering human-centric objectives beyond decision accuracy in AI-assisted decision-making, opening up the novel research challenge of optimizing human-AI interaction for such objectives.

相關內容

In this work, we address the issue of quality of experience (QoE) in unmanned aerial vehicle (UAV) aided multiuser rate-splitting multiple access (RSMA) networks under secrecy constraints. The problem is formulated as maximization of sum mean opinion scores (MOSs) of the users. The problem is decomposed into two subproblems, beamforming and rate allocation and UAV trajectory subproblem. For, beamforming and rate allocation subproblem, we use the epigraph method, property of polynomials, and the norm-bounded error of channels, we linearize the objective function. Then, applying second-order conic (SOC) and first Taylor expansion, we convexify the remaining nonconvex constraints. For the highly nonconvex UAV trajectory, we unroll the constraints and we apply first Taylor expansion on the unrolled constraints. The simulation results demonstrate the efficiency of the proposed framework.

Large Language Models (LLMs) have emerged as integral tools for reasoning, planning, and decision-making, drawing upon their extensive world knowledge and proficiency in language-related tasks. LLMs thus hold tremendous potential for natural language interaction within multi-agent systems to foster cooperation. However, LLM agents tend to over-report and comply with any instruction, which may result in information redundancy and confusion in multi-agent cooperation. Inspired by human organizations, this paper introduces a framework that imposes prompt-based organization structures on LLM agents to mitigate these problems. Through a series of experiments with embodied LLM agents and human-agent collaboration, our results highlight the impact of designated leadership on team efficiency, shedding light on the leadership qualities displayed by LLM agents and their spontaneous cooperative behaviors. Further, we harness the potential of LLMs to propose enhanced organizational prompts, via a Criticize-Reflect process, resulting in novel organization structures that reduce communication costs and enhance team efficiency.

The problem of improving the handover performance in Long Term Evolution-Advanced (LTE-A) networks has not been fully solved yet. Traditionally, the selection of the target Evolved Node B (TeNB) in the handover procedure is based on the signal strength measurements, which may not produce a reliable handover. A reliable handover method may reduce the instances of unstable or frequent handovers that otherwise waste network resources. The signal strength measurement process is inherently time consuming as the user equipment (UE) has to measure multiple neighboring eNB (NeNB) frequencies in each measurement period. An efficient handover method is required to improve the overall performance of such systems. In this paper we propose a reliable and fast TeNB selection scheme for LTE-A handover. The proposed scheme outperforms the existing LTE-A handover methods. The improved performance is achieved by selecting the TeNB based on some three independent parameters, namely orientation matching (OM), current load (CL), and the received signal strengths. An UE essentially measures only the NeNBs shortlisted based on OM and CL; thus measurement time is reduced considerably leading to a reduction of overall handover time. The performance of the proposed scheme is validated by simulation.

While the benefits of reconfigurable manufacturing systems (RMS) are well-known, there are still challenges to their development, including, among others, a modular software architecture that enables rapid reconfiguration without much reprogramming effort. Skill-based engineering improves software modularity and increases the reconfiguration potential of RMS. Nevertheless, a skills' composition framework with a focus on frequent and rapid software changes is still missing. The Behavior trees (BTs) framework is a novel approach, which enables intuitive design of modular hierarchical control structures. BTs have been mostly explored from the AI and robotics perspectives, and little work has been done in investigating their potential for composing skills in the manufacturing domain. This paper proposes a framework for skills' composition and execution in skill-based reconfigurable cyber-physical production modules (RCPPMs). It is based on distributed BTs and provides good integration between low-level devices' specific code and AI-based task-oriented frameworks. We have implemented the provided models for the IEC 61499-based distributed automation controllers to show the instantiation of the proposed framework with the specific industrial technology and enable its evaluation by the automation community.

With current state-of-the-art automatic speech recognition (ASR) systems, it is not possible to transcribe overlapping speech audio streams separately. Consequently, when these ASR systems are used as part of a social robot like Pepper for interaction with a human, it is common practice to close the robot's microphone while it is talking itself. This prevents the human users to interrupt the robot, which limits speech-based human-robot interaction. To enable a more natural interaction which allows for such interruptions, we propose an audio processing pipeline for filtering out robot's ego speech using only a single-channel microphone. This pipeline takes advantage of the possibility to feed the robot ego speech signal, generated by a text-to-speech API, as training data into a machine learning model. The proposed pipeline combines a convolutional neural network and spectral subtraction to extract overlapping human speech from the audio recorded by the robot-embedded microphone. When evaluating on a held-out test set, we find that this pipeline outperforms our previous approach to this task, as well as state-of-the-art target speech extraction systems that were retrained on the same dataset. We have also integrated the proposed pipeline into a lightweight robot software development framework to make it available for broader use. As a step towards demonstrating the feasibility of deploying our pipeline, we use this framework to evaluate the effectiveness of the pipeline in a small lab-based feasibility pilot using the social robot Pepper. Our results show that when participants interrupt the robot, the pipeline can extract the participant's speech from one-second streaming audio buffers received by the robot-embedded single-channel microphone, hence in near-real time.

The existing methods for Remote Sensing Image Change Captioning (RSICC) perform well in simple scenes but exhibit poorer performance in complex scenes. This limitation is primarily attributed to the model's constrained visual ability to distinguish and locate changes. Acknowledging the inherent correlation between change detection (CD) and RSICC tasks, we believe pixel-level CD is significant for describing the differences between images through language. Regrettably, the current RSICC dataset lacks readily available pixel-level CD labels. To address this deficiency, we leverage a model trained on existing CD datasets to derive CD pseudo-labels. We propose an innovative network with an auxiliary CD branch, supervised by pseudo-labels. Furthermore, a semantic fusion augment (SFA) module is proposed to fuse the feature information extracted by the CD branch, thereby facilitating the nuanced description of changes. Experiments demonstrate that our method achieves state-of-the-art performance and validate that learning pixel-level CD pseudo-labels significantly contributes to change captioning. Our code will be available at: //github.com/Chen-Yang-Liu/Pix4Cap

Counterfactual explanations constitute among the most popular methods for analyzing black-box systems since they can recommend cost-efficient and actionable changes to the input of a system to obtain the desired system output. While most of the existing counterfactual methods explain a single instance, several real-world problems, such as customer satisfaction, require the identification of a single counterfactual that can satisfy multiple instances (e.g. customers) simultaneously. To address this limitation, in this work, we propose a flexible two-stage algorithm for finding groups of instances and computing cost-efficient multi-instance counterfactual explanations. The paper presents the algorithm and its performance against popular alternatives through a comparative evaluation.

Current methods for few-shot action recognition mainly fall into the metric learning framework following ProtoNet, which demonstrates the importance of prototypes. Although they achieve relatively good performance, the effect of multimodal information is ignored, e.g. label texts. In this work, we propose a novel MultimOdal PRototype-ENhanced Network (MORN), which uses the semantic information of label texts as multimodal information to enhance prototypes. A CLIP visual encoder and a frozen CLIP text encoder are introduced to obtain features with good multimodal initialization. Then in the visual flow, visual prototypes are computed by a visual prototype-computed module. In the text flow, a semantic-enhanced (SE) module and an inflating operation are used to obtain text prototypes. The final multimodal prototypes are then computed by a multimodal prototype-enhanced (MPE) module. Besides, we define a PRototype SImilarity DiffErence (PRIDE) to evaluate the quality of prototypes, which is used to verify our improvement on the prototype level and effectiveness of MORN. We conduct extensive experiments on four popular few-shot action recognition datasets: HMDB51, UCF101, Kinetics and SSv2, and MORN achieves state-of-the-art results. When plugging PRIDE into the training stage, the performance can be further improved.

Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司