亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One of the most basic, longstanding open problems in the theory of dynamical systems is whether reachability is decidable for one-dimensional piecewise affine maps with two intervals. In this paper we prove that for injective maps, it is decidable. We also study various related problems, in each case either establishing decidability, or showing that they are closely connected to Diophantine properties of certain transcendental numbers, analogous to the positivity problem for linear recurrence sequences. Lastly, we consider topological properties of orbits of one-dimensional piecewise affine maps, not necessarily with two intervals, and negatively answer a question of Bournez, Kurganskyy, and Potapov, about the set of orbits in expanding maps.

相關內容

We present simple randomized and exchangeable improvements of Markov's inequality, as well as Chebyshev's inequality and Chernoff bounds. Our variants are never worse and typically strictly more powerful than the original inequalities. The proofs are short and elementary, and can easily yield similarly randomized or exchangeable versions of a host of other inequalities that employ Markov's inequality as an intermediate step. We point out some simple statistical applications involving tests that combine dependent e-values. In particular, we uniformly improve the power of universal inference, and obtain tighter betting-based nonparametric confidence intervals. Simulations reveal nontrivial gains in power (and no losses) in a variety of settings.

We consider a standard two-source model for uniform common randomness (UCR) generation, in which Alice and Bob observe independent and identically distributed (i.i.d.) samples of a correlated finite source and where Alice is allowed to send information to Bob over an arbitrary single-user channel. We study the \(\boldsymbol{\epsilon}\)-UCR capacity for the proposed model, defined as the maximum common randomness rate one can achieve such that the probability that Alice and Bob do not agree on a common uniform or nearly uniform random variable does not exceed \(\boldsymbol{\epsilon}.\) We establish a lower and an upper bound on the \(\boldsymbol{\epsilon}\)-UCR capacity using the bounds on the \(\boldsymbol{\epsilon}\)-transmission capacity proved by Verd\'u and Han for arbitrary point-to-point channels.

Researchers commonly believe that neural networks model a high-dimensional space but cannot give a clear definition of this space. What is this space? What is its dimension? And does it has finite dimensions? In this paper, we develop a plausible theory on interpreting neural networks in terms of the role of activation functions in neural networks and define a high-dimensional (more precisely, an infinite-dimensional) space that neural networks including deep-learning networks could create. We show that the activation function acts as a magnifying function that maps the low-dimensional linear space into an infinite-dimensional space, which can distinctly identify the polynomial approximation of any multivariate continuous function of the variable values being the same features of the given dataset. Given a dataset with each example of $d$ features $f_1$, $f_2$, $\cdots$, $f_d$, we believe that neural networks model a special space with infinite dimensions, each of which is a monomial $$\prod_{i_1, i_2, \cdots, i_d} f_1^{i_1} f_2^{i_2} \cdots f_d^{i_d}$$ for some non-negative integers ${i_1, i_2, \cdots, i_d} \in \mathbb{Z}_{0}^{+}=\{0,1,2,3,\ldots\} $. We term such an infinite-dimensional space a $\textit{ Super Space (SS)}$. We see such a dimension as the minimum information unit. Every neuron node previously through an activation layer in neural networks is a $\textit{ Super Plane (SP) }$, which is actually a polynomial of infinite degree. This $\textit{ Super Space }$ is something like a coordinate system, in which every multivalue function can be represented by a $\textit{ Super Plane }$. We also show that training NNs could at least be reduced to solving a system of nonlinear equations. %solve sets of nonlinear equations

Synthesizing large logic programs through symbolic Inductive Logic Programming (ILP) typically requires intermediate definitions. However, cluttering the hypothesis space with intensional predicates typically degrades performance. In contrast, gradient descent provides an efficient way to find solutions within such high- dimensional spaces. Neuro-symbolic ILP approaches have not fully exploited this so far. We propose extending the {\delta}ILP approach to inductive synthesis with large-scale predicate invention, thus allowing us to exploit the efficacy of high-dimensional gradient descent. We show that large-scale predicate invention benefits differentiable inductive synthesis through gradient descent and allows one to learn solutions for tasks beyond the capabilities of existing neuro-symbolic ILP systems. Furthermore, we achieve these results without specifying the precise structure of the solution within the language bias.

The ParaOpt algorithm was recently introduced as a time-parallel solver for optimal-control problems with a terminal-cost objective, and convergence results have been presented for the linear diffusive case with implicit-Euler time integrators. We reformulate ParaOpt for tracking problems and provide generalized convergence analyses for both objectives. We focus on linear diffusive equations and prove convergence bounds that are generic in the time integrators used. For large problem dimensions, ParaOpt's performance depends crucially on having a good preconditioner to solve the arising linear systems. For the case where ParaOpt's cheap, coarse-grained propagator is linear, we introduce diagonalization-based preconditioners inspired by recent advances in the ParaDiag family of methods. These preconditioners not only lead to a weakly-scalable ParaOpt version, but are themselves invertible in parallel, making maximal use of available concurrency. They have proven convergence properties in the linear diffusive case that are generic in the time discretization used, similarly to our ParaOpt results. Numerical results confirm that the iteration count of the iterative solvers used for ParaOpt's linear systems becomes constant in the limit of an increasing processor count. The paper is accompanied by a sequential MATLAB implementation.

Let a polytope $P$ be defined by a system $A x \leq b$. We consider the problem of counting the number of integer points inside $P$, assuming that $P$ is $\Delta$-modular, where the polytope $P$ is called $\Delta$-modular if all the rank sub-determinants of $A$ are bounded by $\Delta$ in the absolute value. We present a new FPT-algorithm, parameterized by $\Delta$ and by the maximal number of vertices in $P$, where the maximum is taken by all r.h.s. vectors $b$. We show that our algorithm is more efficient for $\Delta$-modular problems than the approach of A. Barvinok et al. To this end, we do not directly compute the short rational generating function for $P \cap Z^n$, which is commonly used for the considered problem. Instead, we use the dynamic programming principle to compute its particular representation in the form of exponential series that depends on a single variable. We completely do not rely to the Barvinok's unimodular sign decomposition technique. Using our new complexity bound, we consider different special cases that may be of independent interest. For example, we give FPT-algorithms for counting the integer points number in $\Delta$-modular simplices and similar polytopes that have $n + O(1)$ facets. As a special case, for any fixed $m$, we give an FPT-algorithm to count solutions of the unbounded $m$-dimensional $\Delta$-modular subset-sum problem.

A learning-based safety filter is developed for discrete-time linear time-invariant systems with unknown models subject to Gaussian noises with unknown covariance. Safety is characterized using polytopic constraints on the states and control inputs. The empirically learned model and process noise covariance with their confidence bounds are used to construct a robust optimization problem for minimally modifying nominal control actions to ensure safety with high probability. The optimization problem relies on tightening the original safety constraints. The magnitude of the tightening is larger at the beginning since there is little information to construct reliable models, but shrinks with time as more data becomes available.

Given a set of probability measures $\mathcal{P}$ representing an agent's knowledge on the elements of a sigma-algebra $\mathcal{F}$, we can compute upper and lower bounds for the probability of any event $A\in\mathcal{F}$ of interest. A procedure generating a new assessment of beliefs is said to constrict $A$ if the bounds on the probability of $A$ after the procedure are contained in those before the procedure. It is well documented that (generalized) Bayes' updating does not allow for constriction, for all $A\in\mathcal{F}$. In this work, we show that constriction can take place with and without evidence being observed, and we characterize these possibilities.

This paper presents Squid, a new conjunctive query synthesis algorithm for searching code with target patterns. Given positive and negative examples along with a natural language description, Squid analyzes the relations derived from the examples by a Datalog-based program analyzer and synthesizes a conjunctive query expressing the search intent. The synthesized query can be further used to search for desired grammatical constructs in the editor. To achieve high efficiency, we prune the huge search space by removing unnecessary relations and enumerating query candidates via refinement. We also introduce two quantitative metrics for query prioritization to select the queries from multiple candidates, yielding desired queries for code search. We have evaluated Squid on over thirty code search tasks. It is shown that Squid successfully synthesizes the conjunctive queries for all the tasks, taking only 2.56 seconds on average.

We consider the behavior of the price of anarchy and equilibrium flows in nonatomic multi-commodity routing games as a function of the traffic demand. We analyze their smoothness with a special attention to specific values of the demand at which the support of the Wardrop equilibrium exhibits a phase transition with an abrupt change in the set of optimal routes. Typically, when such a phase transition occurs, the price of anarchy function has a breakpoint, \ie is not differentiable. We prove that, if the demand varies proportionally across all commodities, then, at a breakpoint, the largest left or right derivatives of the price of anarchy and of the social cost at equilibrium, are associated with the smaller equilibrium support. This proves -- under the assumption of proportional demand -- a conjecture of o'Hare et al. (2016), who observed this behavior in simulations. We also provide counterexamples showing that this monotonicity of the one-sided derivatives may fail when the demand does not vary proportionally, even if it moves along a straight line not passing through the origin.

北京阿比特科技有限公司