亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the behavior of the price of anarchy and equilibrium flows in nonatomic multi-commodity routing games as a function of the traffic demand. We analyze their smoothness with a special attention to specific values of the demand at which the support of the Wardrop equilibrium exhibits a phase transition with an abrupt change in the set of optimal routes. Typically, when such a phase transition occurs, the price of anarchy function has a breakpoint, \ie is not differentiable. We prove that, if the demand varies proportionally across all commodities, then, at a breakpoint, the largest left or right derivatives of the price of anarchy and of the social cost at equilibrium, are associated with the smaller equilibrium support. This proves -- under the assumption of proportional demand -- a conjecture of o'Hare et al. (2016), who observed this behavior in simulations. We also provide counterexamples showing that this monotonicity of the one-sided derivatives may fail when the demand does not vary proportionally, even if it moves along a straight line not passing through the origin.

相關內容

In this paper, we propose to use a hybrid relay-reflecting intelligent surface (HR-RIS) to enhance the performance of a covert communication system. Specifically, the HR-RIS consists of passive reflecting elements and active relay elements to manipulate the wireless signals from a transmitter to a desired receiver while ensuring the covertness of the transmission via avoiding such signals being detected by a warden. To fully explore the benefits offered by the HR-RIS, we first formulate the joint design of the transmit power and relay/reflection coefficients of the HR-RIS as an optimization problem to maximize the covert rate subject to a covertness constraint. To tackle the solution to this optimization problem, we then derive a closed-form expression for an upper bound on covert rate, based on which we develop an alternate algorithm to solve the formulated optimization problem. Our examination shows that the HR-RIS outperforms the traditional RIS in term of achieving a higher covert rate. Interestingly, we also observe the major part of the performance gain brought by the HR-RIS can be obtained by a small number of active relay elements (e.g., 5) and further increasing this number does not improve the covert communication performance.

Meta-analysis aggregates information across related studies to provide more reliable statistical inference and has been a vital tool for assessing the safety and efficacy of many high profile pharmaceutical products. A key challenge in conducting a meta-analysis is that the number of related studies is typically small. Applying classical methods that are asymptotic in the number of studies can compromise the validity of inference, particularly when heterogeneity across studies is present. Moreover, serious adverse events are often rare and can result in one or more studies with no events in at least one study arm. While it is common to use arbitrary continuity corrections or remove zero-event studies to stabilize or define effect estimates in such settings, these practices can invalidate subsequent inference. To address these significant practical issues, we introduce an exact inference method for comparing event rates in two treatment arms under a random effects framework, which we coin "XRRmeta". In contrast to existing methods, the coverage of the confidence interval from XRRmeta is guaranteed to be at or above the nominal level (up to Monte Carlo error) when the event rates, number of studies, and/or the within-study sample sizes are small. XRRmeta is also justified in its treatment of zero-event studies through a conditional inference argument. Importantly, our extensive numerical studies indicate that XRRmeta does not yield overly conservative inference. We apply our proposed method to reanalyze the occurrence of major adverse cardiovascular events among type II diabetics treated with rosiglitazone and in a more recent example examining the utility of face masks in preventing person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19).

Hardware intellectual property (IP) piracy is an emerging threat to the global supply chain. Correspondingly, various countermeasures aim to protect hardware IPs, such as logic locking, camouflaging, and split manufacturing. However, these countermeasures cannot always guarantee IP security. A malicious attacker can access the layout/netlist of the hardware IP protected by these countermeasures and further retrieve the design. To eliminate/bypass these vulnerabilities, a recent approach redacts the design's IP to an embedded field-programmable gate array (eFPGA), disabling the attacker's access to the layout/netlist. eFPGAs can be programmed with arbitrary functionality. Without the bitstream, the attacker cannot recover the functionality of the protected IP. Consequently, state-of-the-art attacks are inapplicable to pirate the redacted hardware IP. In this paper, we challenge the assumed security of eFPGA-based redaction. We present an attack to retrieve the hardware IP with only black-box access to a programmed eFPGA. We observe the effect of modern electronic design automation (EDA) tools on practical hardware circuits and leverage the observation to guide our attack. Thus, our proposed method FuncTeller selects minterms to query, recovering the circuit function within a reasonable time. We demonstrate the effectiveness and efficiency of FuncTeller on multiple circuits, including academic benchmark circuits, Stanford MIPS processor, IBEX processor, Common Evaluation Platform GPS, and Cybersecurity Awareness Worldwide competition circuits. Our results show that FuncTeller achieves an average accuracy greater than 85% over these tested circuits retrieving the design's functionality.

We study the problem of social welfare maximization in bilateral trade, where two agents, a buyer and a seller, trade an indivisible item. We consider arguably the simplest form of mechanisms -- the fixed-price mechanisms, where the designer offers trade at a fixed price to the seller and buyer. Besides the simple form, fixed-price mechanisms are also the only DSIC and budget balanced mechanisms in bilateral trade. We obtain improved approximation ratios of fixed-price mechanisms in different settings. In the full prior information setting where the designer has access to the value distributions of both the seller and buyer, we show that the optimal fixed-price mechanism can achieve at least $0.72$ of the optimal welfare, and no fixed-price mechanism can achieve more than $0.7381$ of the optimal welfare. Prior to our result the state of the art approximation ratio was $1 - 1/e + 0.0001 \approx 0.632$. Interestingly, we further show that the optimal approximation ratio achievable with full prior information is identical to the optimal approximation ratio obtainable with only one-sided prior information. We further consider two limited information settings. In the first one, the designer is only given the mean of the buyer's (or the seller's) value. We show that with such minimal information, one can already design a fixed-price mechanism that achieves $2/3$ of the optimal social welfare, which surpasses the previous state of the art ratio even when the designer has access to the full prior information. Furthermore, $2/3$ is the optimal attainable ratio in this setting. In the second one, we assume that the designer has sample access to the value distributions. We propose a new family mechanisms called order statistic mechanisms and provide a complete characterization of their approximation ratios for any fixed number of samples.

We present new results on average causal effects in settings with unmeasured exposure-outcome confounding. Our results are motivated by a class of estimands, e.g., frequently of interest in medicine and public health, that are currently not targeted by standard approaches for average causal effects. We recognize these estimands as queries about the average causal effect of an intervening variable. We anchor our introduction of these estimands in an investigation of the role of chronic pain and opioid prescription patterns in the opioid epidemic, and illustrate how conventional approaches will lead unreplicable estimates with ambiguous policy implications. We argue that our altenative effects are replicable and have clear policy implications, and furthermore are non-parametrically identified by the classical frontdoor formula. As an independent contribution, we derive a new semiparametric efficient estimator of the frontdoor formula with a uniform sample boundedness guarantee. This property is unique among previously-described estimators in its class, and we demonstrate superior performance in finite-sample settings. Theoretical results are applied with data from the National Health and Nutrition Examination Survey.

We present a fully polynomial-time approximation scheme (FPTAS) for computing equilibria in congestion games, under \emph{smoothed} running-time analysis. More precisely, we prove that if the resource costs of a congestion game are randomly perturbed by independent noises, whose density is at most $\phi$, then \emph{any} sequence of $(1+\varepsilon)$-improving dynamics will reach an $(1+\varepsilon)$-approximate pure Nash equilibrium (PNE) after an expected number of steps which is strongly polynomial in $\frac{1}{\varepsilon}$, $\phi$, and the size of the game's description. Our results establish a sharp contrast to the traditional worst-case analysis setting, where it is known that better-response dynamics take exponentially long to converge to $\alpha$-approximate PNE, for any constant factor $\alpha\geq 1$. As a matter of fact, computing $\alpha$-approximate PNE in congestion games is PLS-hard. We demonstrate how our analysis can be applied to various different models of congestion games including general, step-function, and polynomial cost, as well as fair cost-sharing games (where the resource costs are decreasing). It is important to note that our bounds do not depend explicitly on the cardinality of the players' strategy sets, and thus the smoothed FPTAS is readily applicable to network congestion games as well.

We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.

Two numerical schemes are proposed and investigated for the Yang--Mills equations, which can be seen as a nonlinear generalisation of the Maxwell equations set on Lie algebra-valued functions, with similarities to certain formulations of General Relativity. Both schemes are built on the Discrete de Rham (DDR) method, and inherit from its main features: an arbitrary order of accuracy, and applicability to generic polyhedral meshes. They make use of the complex property of the DDR, together with a Lagrange-multiplier approach, to preserve, at the discrete level, a nonlinear constraint associated with the Yang--Mills equations. We also show that the schemes satisfy a discrete energy dissipation (the dissipation coming solely from the implicit time stepping). Issues around the practical implementations of the schemes are discussed; in particular, the assembly of the local contributions in a way that minimises the price we pay in dealing with nonlinear terms, in conjunction with the tensorisation coming from the Lie algebra. Numerical tests are provided using a manufactured solution, and show that both schemes display a convergence in $L^2$-norm of the potential and electrical fields in $\mathcal O(h^{k+1})$ (provided that the time step is of that order), where $k$ is the polynomial degree chosen for the DDR complex. We also numerically demonstrate the preservation of the constraint.

Multivariate sequential data collected in practice often exhibit temporal irregularities, including nonuniform time intervals and component misalignment. However, if uneven spacing and asynchrony are endogenous characteristics of the data rather than a result of insufficient observation, the information content of these irregularities plays a defining role in characterizing the multivariate dependence structure. Existing approaches for probabilistic forecasting either overlook the resulting statistical heterogeneities, are susceptible to imputation biases, or impose parametric assumptions on the data distribution. This paper proposes an end-to-end solution that overcomes these limitations by allowing the observation arrival times to play the central role of model construction, which is at the core of temporal irregularities. To acknowledge temporal irregularities, we first enable unique hidden states for components so that the arrival times can dictate when, how, and which hidden states to update. We then develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian, and supervise this representation by carefully factorizing the log-likelihood objective to select conditional information that facilitates capturing time variation and path dependency. The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.

Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.

北京阿比特科技有限公司