Given a standard myopic dynamic process among coalition structures, an absorbing set is a minimal collection of such structures that is never left once entered through that process. Absorbing sets are an important solution concept in coalition formation games, but they have drawbacks: they can be large and hard to obtain. In this paper, we characterize an absorbing set in terms of a collection consisting of a small number of sets of coalitions that we refer to as a "reduced form" of a game. We apply our characterization to study convergence to stability in several economic environments.
Conformal prediction offers a practical framework for distribution-free uncertainty quantification, providing finite-sample coverage guarantees under relatively mild assumptions on data exchangeability. However, these assumptions cease to hold for time series due to their temporally correlated nature. In this work, we present a novel use of conformal prediction for time series forecasting that incorporates time series decomposition. This approach allows us to model different temporal components individually. By applying specific conformal algorithms to each component and then merging the obtained prediction intervals, we customize our methods to account for the different exchangeability regimes underlying each component. Our decomposition-based approach is thoroughly discussed and empirically evaluated on synthetic and real-world data. We find that the method provides promising results on well-structured time series, but can be limited by factors such as the decomposition step for more complex data.
We introduce the broad subclass of algebraic compressed sensing problems, where structured signals are modeled either explicitly or implicitly via polynomials. This includes, for instance, low-rank matrix and tensor recovery. We employ powerful techniques from algebraic geometry to study well-posedness of sufficiently general compressed sensing problems, including existence, local recoverability, global uniqueness, and local smoothness. Our main results are summarized in thirteen questions and answers in algebraic compressed sensing. Most of our answers concerning the minimum number of required measurements for existence, recoverability, and uniqueness of algebraic compressed sensing problems are optimal and depend only on the dimension of the model.
The present work concerns the derivation of a numerical scheme to approximate weak solutions of the Euler equations with a gravitational source term. The designed scheme is proved to be fully well-balanced since it is able to exactly preserve all moving equilibrium solutions, as well as the corresponding steady solutions at rest obtained when the velocity vanishes. Moreover, the proposed scheme is entropy-preserving since it satisfies all fully discrete entropy inequalities. In addition, in order to satisfy the required admissibility of the approximate solutions, the positivity of both approximate density and pressure is established. Several numerical experiments attest the relevance of the developed numerical method.
Estimating parameters of a diffusion process given continuous-time observations of the process via maximum likelihood approaches or, online, via stochastic gradient descent or Kalman filter formulations constitutes a well-established research area. It has also been established previously that these techniques are, in general, not robust to perturbations in the data in the form of temporal correlations. While the subject is relatively well understood and appropriate modifications have been suggested in the context of multi-scale diffusion processes and their reduced model equations, we consider here an alternative setting where a second-order diffusion process in positions and velocities is only observed via its positions. In this note, we propose a simple modification to standard stochastic gradient descent and Kalman filter formulations, which eliminates the arising systematic estimation biases. The modification can be extended to standard maximum likelihood approaches and avoids computation of previously proposed correction terms.
Precision matrices are crucial in many fields such as social networks, neuroscience, and economics, representing the edge structure of Gaussian graphical models (GGMs), where a zero in an off-diagonal position of the precision matrix indicates conditional independence between nodes. In high-dimensional settings where the dimension of the precision matrix $p$ exceeds the sample size $n$ and the matrix is sparse, methods like graphical Lasso, graphical SCAD, and CLIME are popular for estimating GGMs. While frequentist methods are well-studied, Bayesian approaches for (unstructured) sparse precision matrices are less explored. The graphical horseshoe estimate by \citet{li2019graphical}, applying the global-local horseshoe prior, shows superior empirical performance, but theoretical work for sparse precision matrix estimations using shrinkage priors is limited. This paper addresses these gaps by providing concentration results for the tempered posterior with the fully specified horseshoe prior in high-dimensional settings. Moreover, we also provide novel theoretical results for model misspecification, offering a general oracle inequality for the posterior.
Renewed interest in the relationship between artificial and biological neural networks motivates the study of gradient-free methods. Considering the linear regression model with random design, we theoretically analyze in this work the biologically motivated (weight-perturbed) forward gradient scheme that is based on random linear combination of the gradient. If d denotes the number of parameters and k the number of samples, we prove that the mean squared error of this method converges for $k\gtrsim d^2\log(d)$ with rate $d^2\log(d)/k.$ Compared to the dimension dependence d for stochastic gradient descent, an additional factor $d\log(d)$ occurs.
We prove the existence of signed combinatorial interpretations for several large families of structure constants. These families include standard bases of symmetric and quasisymmetric polynomials, as well as various bases in Schubert theory. The results are stated in the language of computational complexity, while the proofs are based on the effective M\"obius inversion.
We provide a novel dimension-free uniform concentration bound for the empirical risk function of constrained logistic regression. Our bound yields a milder sufficient condition for a uniform law of large numbers than conditions derived by the Rademacher complexity argument and McDiarmid's inequality. The derivation is based on the PAC-Bayes approach with second-order expansion and Rademacher-complexity-based bounds for the residual term of the expansion.
The energy consumption and the compute performance of a fluid dynamic code have been investigated varying parallelization approach, arithmetic precision and clock speed. The code is based on a Lattice Boltzmann approximation, is written in Fortran and was executed on high-end GPUs of Leonardo Booster supercomputer. Tests were conducted on single server nodes (up to 4 GPUs in parallel). Performance metrics like the number of operations per second and energy consumption are reported, to quantify how smart coding approach and system adjustment can contribute to reduction of energy footprint while keeping the scientific throughput almost unaltered or with acceptable level of degradation. Results indicate that this application can be executed with 20% of energy saving and reduced thermal stress, at the cost of 5% more computing time. The paper presents preliminary conclusions, as it is a first step of a larger study dedicated to energy efficiency at scale.
For the fractional Laplacian of variable order, an efficient and accurate numerical evaluation in multi-dimension is a challenge for the nature of a singular integral. We propose a simple and easy-to-implement finite difference scheme for the multi-dimensional variable-order fractional Laplacian defined by a hypersingular integral. We prove that the scheme is of second-order convergence and apply the developed finite difference scheme to solve various equations with the variable-order fractional Laplacian. We present a fast solver with quasi-linear complexity of the scheme for computing variable-order fractional Laplacian and corresponding PDEs. Several numerical examples demonstrate the accuracy and efficiency of our algorithm and verify our theory.