亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Practical hardware limitations often impose a reduced number of available phase shifts at the elements of a reconfigurable intelligent surface (RIS). Most works often assume continuous phase-shits at the RIS elements for the transmit and passive beamforming optimization, which can lead to substantial performance loss. Therefore, to harvest the gains of RIS-assisted multi-stream multiple-input multiple-output (MIMO) communications under realistic phase shifts, this letter proposes a problem formulation for the maximization of the achievable rate over the transmit precoder and RIS elements, which avoids an explicit discrete constraint while still incorporating its effect. To efficiently tackle the resulting problem when considering large arrays and RIS panels, an iterative algorithm is derived which comprises a sequence of simple projections. Simulation results demonstrate that the proposed design can be very effective, especially with low-resolution phase-shifts.

相關內容

Federated learning enables multiple hospitals to cooperatively learn a shared model without privacy disclosure. Existing methods often take a common assumption that the data from different hospitals have the same modalities. However, such a setting is difficult to fully satisfy in practical applications, since the imaging guidelines may be different between hospitals, which makes the number of individuals with the same set of modalities limited. To this end, we formulate this practical-yet-challenging cross-modal vertical federated learning task, in which shape data from multiple hospitals have different modalities with a small amount of multi-modality data collected from the same individuals. To tackle such a situation, we develop a novel framework, namely Federated Consistent Regularization constrained Feature Disentanglement (Fed-CRFD), for boosting MRI reconstruction by effectively exploring the overlapping samples (individuals with multi-modalities) and solving the domain shift problem caused by different modalities. Particularly, our Fed-CRFD involves an intra-client feature disentangle scheme to decouple data into modality-invariant and modality-specific features, where the modality-invariant features are leveraged to mitigate the domain shift problem. In addition, a cross-client latent representation consistency constraint is proposed specifically for the overlapping samples to further align the modality-invariant features extracted from different modalities. Hence, our method can fully exploit the multi-source data from hospitals while alleviating the domain shift problem. Extensive experiments on two typical MRI datasets demonstrate that our network clearly outperforms state-of-the-art MRI reconstruction methods. The source code will be publicly released upon the publication of this work.

In this work, we consider the problem of multiuser scheduling for the downlink of cell-free massive multi-input multi-output networks with clustering. In particular, we develop a multiuser scheduling algorithm based on an enhanced greedy method that is deployed with linear precoding and clustering. Closed-form expressions for the sum-rate performance are derived when imperfect channel state information is considered. The proposed scheduling algorithm is then analyzed along with its computational cost and network signaling load. Numerical results show that the proposed scheduling method outperforms the existing methods and in low signal-to-noise ratios, its performance becomes much closer to the optimal approach.

We consider the block coordinate descent methods of Gauss-Seidel type with proximal regularization (BCD-PR), which is a classical method of minimizing general nonconvex objectives under constraints that has a wide range of practical applications. We theoretically establish the worst-case complexity bound for this algorithm. Namely, we show that for general nonconvex smooth objectives with block-wise constraints, the classical BCD-PR algorithm converges to an epsilon-stationary point within O(1/epsilon) iterations. Under a mild condition, this result still holds even if the algorithm is executed inexactly in each step. As an application, we propose a provable and efficient algorithm for `Wasserstein CP-dictionary learning', which seeks a set of elementary probability distributions that can well-approximate a given set of d-dimensional joint probability distributions. Our algorithm is a version of BCD-PR that operates in the dual space, where the primal problem is regularized both entropically and proximally.

Machine learning typically relies on the assumption that training and testing distributions are identical and that data is centrally stored for training and testing. However, in real-world scenarios, distributions may differ significantly and data is often distributed across different devices, organizations, or edge nodes. Consequently, it is imperative to develop models that can effectively generalize to unseen distributions where data is distributed across different domains. In response to this challenge, there has been a surge of interest in federated domain generalization (FDG) in recent years. FDG combines the strengths of federated learning (FL) and domain generalization (DG) techniques to enable multiple source domains to collaboratively learn a model capable of directly generalizing to unseen domains while preserving data privacy. However, generalizing the federated model under domain shifts is a technically challenging problem that has received scant attention in the research area so far. This paper presents the first survey of recent advances in this area. Initially, we discuss the development process from traditional machine learning to domain adaptation and domain generalization, leading to FDG as well as provide the corresponding formal definition. Then, we categorize recent methodologies into four classes: federated domain alignment, data manipulation, learning strategies, and aggregation optimization, and present suitable algorithms in detail for each category. Next, we introduce commonly used datasets, applications, evaluations, and benchmarks. Finally, we conclude this survey by providing some potential research topics for the future.

This paper introduces a multilingual automatic speech recognizer (ASR) for maritime radio communi-cation that automatically converts received VHF radio signals into text. The challenges of maritime radio communication are described at first, and the deep learning architecture of marFM consisting of audio processing techniques and machine learning algorithms is presented. Subsequently, maritime radio data of interest is analyzed and then used to evaluate the transcription performance of our ASR model for various maritime radio data.

Reconfigurable intelligent surface (RIS)-empowered communication is an emerging technology that has recently received growing attention as a potential candidate for next-generation wireless communications. Although RISs have shown the potential of manipulating the wireless channel through passive beamforming, it is shown that they can also bring undesired side effects, such as reflecting the electromagnetic interference (EMI) from the surrounding environment to the receiver side. In this study, we propose a novel EMI cancellation scheme to mitigate the impact of the EMI by exploiting its special time-domain structure and considering a clever passive beamforming method at the RIS. Compared to its benchmark, computer simulations show that the proposed scheme achieves superior performance in terms of the average signal-to-interference-plus-noise ratio (SINR) and outage probability (OP), especially when the EMI power is comparable to the power of the information signal impinging on the RIS surface.

As a promising solution to improve communication quality, unmanned aerial vehicle (UAV) has been widely integrated into wireless networks. In this paper, for the sake of enhancing the message exchange rate between User1 (U1) and User2 (U2), an intelligent reflective surface (IRS)-and-UAV- assisted two-way amplify-and-forward (AF) relay wireless system is proposed, where U1 and U2 can communicate each other via a UAV-mounted IRS and an AF relay. Besides, an optimization problem of maximizing minimum rate is casted, where the variables, namely AF relay beamforming matrix and IRS phase shifts of two time slots, need to be optimized. To achieve a maximum rate, a low-complexity alternately iterative (AI) scheme based on zero forcing and successive convex approximation (LC-ZF-SCA) algorithm is put forward, where the expression of AF relay beamforming matrix can be derived in semi-closed form by ZF method, and IRS phase shift vectors of two time slots can be respectively optimized by utilizing SCA algorithm. To obtain a significant rate enhancement, a high-performance AI method based on one step, semidefinite programming and penalty SCA (ONS-SDP-PSCA) is proposed, where the beamforming matrix at AF relay can be firstly solved by singular value decomposition and ONS method, IRS phase shift matrices of two time slots are optimized by SDP and PSCA algorithms. Simulation results present that the rate performance of the proposed LC-ZF-SCA and ONS-SDP-PSCA methods surpass those of random phase and only AF relay. In particular, when total transmit power is equal to 30dBm, the proposed two methods can harvest more than 68.5% rate gain compared to random phase and only AF relay. Meanwhile, the rate performance of ONS-SDP-PSCA method at cost of extremely high complexity is superior to that of LC-ZF-SCA method.

We provide an analytical characterization of the coverage region of simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-aided two-user downlink communication systems. The cases of orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) are considered, under the energy-splitting (ES) protocol. Results confirm that the use of STAR-RISs is beneficial to extend the coverage region, and that the use of NOMA provides a better performance compared to the OMA counterpart.

The number of satellites, especially those operating in low-earth orbit (LEO), is exploding in recent years. Additionally, the use of COTS hardware into those satellites enables a new paradigm of computing: orbital edge computing (OEC). OEC entails more technically advanced steps compared to single-satellite computing. This feature allows for vast design spaces with multiple parameters, rendering several novel approaches feasible. The mobility of LEO satellites in the network and limited resources of communication, computation, and storage make it challenging to design an appropriate scheduling algorithm for specific tasks in comparison to traditional ground-based edge computing. This article comprehensively surveys the significant areas of focus in orbital edge computing, which include protocol optimization, mobility management, and resource allocation. This article provides the first comprehensive survey of OEC. Previous survey papers have only concentrated on ground-based edge computing or the integration of space and ground technologies. This article presents a review of recent research from 2000 to 2023 on orbital edge computing that covers network design, computation offloading, resource allocation, performance analysis, and optimization. Moreover, having discussed several related works, both technological challenges and future directions are highlighted in the field.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

北京阿比特科技有限公司