亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a promising solution to improve communication quality, unmanned aerial vehicle (UAV) has been widely integrated into wireless networks. In this paper, for the sake of enhancing the message exchange rate between User1 (U1) and User2 (U2), an intelligent reflective surface (IRS)-and-UAV- assisted two-way amplify-and-forward (AF) relay wireless system is proposed, where U1 and U2 can communicate each other via a UAV-mounted IRS and an AF relay. Besides, an optimization problem of maximizing minimum rate is casted, where the variables, namely AF relay beamforming matrix and IRS phase shifts of two time slots, need to be optimized. To achieve a maximum rate, a low-complexity alternately iterative (AI) scheme based on zero forcing and successive convex approximation (LC-ZF-SCA) algorithm is put forward, where the expression of AF relay beamforming matrix can be derived in semi-closed form by ZF method, and IRS phase shift vectors of two time slots can be respectively optimized by utilizing SCA algorithm. To obtain a significant rate enhancement, a high-performance AI method based on one step, semidefinite programming and penalty SCA (ONS-SDP-PSCA) is proposed, where the beamforming matrix at AF relay can be firstly solved by singular value decomposition and ONS method, IRS phase shift matrices of two time slots are optimized by SDP and PSCA algorithms. Simulation results present that the rate performance of the proposed LC-ZF-SCA and ONS-SDP-PSCA methods surpass those of random phase and only AF relay. In particular, when total transmit power is equal to 30dBm, the proposed two methods can harvest more than 68.5% rate gain compared to random phase and only AF relay. Meanwhile, the rate performance of ONS-SDP-PSCA method at cost of extremely high complexity is superior to that of LC-ZF-SCA method.

相關內容

計算(suan)機(ji)動(dong)畫(hua)研討(tao)會(SCA)是計算(suan)機(ji)動(dong)畫(hua)的(de)理論(lun)(lun)和(he)實踐創(chuang)新的(de)主要論(lun)(lun)壇。SCA將從事基于(yu)時(shi)間現象的(de)各個方面的(de)學術研究人(ren)員(yuan)和(he)行業(ye)研究人(ren)員(yuan)以及從業(ye)人(ren)員(yuan)匯聚(ju)在一起,提供了一個私密的(de)環境,鼓勵社區互(hu)動(dong),促(cu)進研究成果的(de)交流,激發未來的(de)想法并建立(li)新的(de)合作關系。 官網地址:

Complex systems in science and engineering sometimes exhibit behavior that changes across different regimes. Traditional global models struggle to capture the full range of this complex behavior, limiting their ability to accurately represent the system. In response to this challenge, we propose a novel competitive learning approach for obtaining data-driven models of physical systems. The primary idea behind the proposed approach is to employ dynamic loss functions for a set of models that are trained concurrently on the data. Each model competes for each observation during training, allowing for the identification of distinct functional regimes within the dataset. To demonstrate the effectiveness of the learning approach, we coupled it with various regression methods that employ gradient-based optimizers for training. The proposed approach was tested on various problems involving model discovery and function approximation, demonstrating its ability to successfully identify functional regimes, discover true governing equations, and reduce test errors.

Wildlife camera trap images are being used extensively to investigate animal abundance, habitat associations, and behavior, which is complicated by the fact that experts must first classify the images manually. Artificial intelligence systems can take over this task but usually need a large number of already-labeled training images to achieve sufficient performance. This requirement necessitates human expert labor and poses a particular challenge for projects with few cameras or short durations. We propose a label-efficient learning strategy that enables researchers with small or medium-sized image databases to leverage the potential of modern machine learning, thus freeing crucial resources for subsequent analyses. Our methodological proposal is two-fold: (1) We improve current strategies of combining object detection and image classification by tuning the hyperparameters of both models. (2) We provide an active learning (AL) system that allows training deep learning models very efficiently in terms of required human-labeled training images. We supply a software package that enables researchers to use these methods directly and thereby ensure the broad applicability of the proposed framework in ecological practice. We show that our tuning strategy improves predictive performance. We demonstrate how the AL pipeline reduces the amount of pre-labeled data needed to achieve a specific predictive performance and that it is especially valuable for improving out-of-sample predictive performance. We conclude that the combination of tuning and AL increases predictive performance substantially. Furthermore, we argue that our work can broadly impact the community through the ready-to-use software package provided. Finally, the publication of our models tailored to European wildlife data enriches existing model bases mostly trained on data from Africa and North America.

Due to the widespread application of deep neural networks~(DNNs) in safety-critical tasks, deep learning testing has drawn increasing attention. During the testing process, test cases that have been fuzzed or selected using test metrics are fed into the model to find fault-inducing test units (e.g., neurons and feature maps, activating which will almost certainly result in a model error) and report them to the DNN developer, who subsequently repair them~(e.g., retraining the model with test cases). Current test metrics, however, are primarily concerned with the neurons, which means that test cases that are discovered either by guided fuzzing or selection with these metrics focus on detecting fault-inducing neurons while failing to detect fault-inducing feature maps. In this work, we propose DeepFeature, which tests DNNs from the feature map level. When testing is conducted, DeepFeature will scrutinize every internal feature map in the model and identify vulnerabilities that can be enhanced through repairing to increase the model's overall performance. Exhaustive experiments are conducted to demonstrate that (1) DeepFeature is a strong tool for detecting the model's vulnerable feature maps; (2) DeepFeature's test case selection has a high fault detection rate and can detect more types of faults~(comparing DeepFeature to coverage-guided selection techniques, the fault detection rate is increased by 49.32\%). (3) DeepFeature's fuzzer also outperforms current fuzzing techniques and generates valuable test cases more efficiently.

This paper focuses on advancing outdoor wireless systems to better support ubiquitous extended reality (XR) applications, and close the gap with current indoor wireless transmission capabilities. We propose a hybrid knowledge-data driven method for channel semantic acquisition and multi-user beamforming in cell-free massive multiple-input multiple-output (MIMO) systems. Specifically, we firstly propose a data-driven multiple layer perceptron (MLP)-Mixer-based auto-encoder for channel semantic acquisition, where the pilot signals, CSI quantizer for channel semantic embedding, and CSI reconstruction for channel semantic extraction are jointly optimized in an end-to-end manner. Moreover, based on the acquired channel semantic, we further propose a knowledge-driven deep-unfolding multi-user beamformer, which is capable of achieving good spectral efficiency with robustness to imperfect CSI in outdoor XR scenarios. By unfolding conventional successive over-relaxation (SOR)-based linear beamforming scheme with deep learning, the proposed beamforming scheme is capable of adaptively learning the optimal parameters to accelerate convergence and improve the robustness to imperfect CSI. The proposed deep unfolding beamforming scheme can be used for access points (APs) with fully-digital array and APs with hybrid analog-digital array. Simulation results demonstrate the effectiveness of our proposed scheme in improving the accuracy of channel acquisition, as well as reducing complexity in both CSI acquisition and beamformer design. The proposed beamforming method achieves approximately 96% of the converged spectrum efficiency performance after only three iterations in downlink transmission, demonstrating its efficacy and potential to improve outdoor XR applications.

Channel estimation (CE) plays a key role in reconfigurable intelligent surface (RIS)-aided multiple-input multiple-output (MIMO) communication systems, while it poses a challenging task due to the passive nature of RIS and the cascaded channel structures. In this paper, a partially decoupled atomic norm minimization (PDANM) framework is proposed for CE of RIS-aided MIMO systems, which exploits the three-dimensional angular sparsity of the channel. In particular, PDANM partially decouples the differential angles at the RIS from other angles at the base station and user equipment, reducing the computational complexity compared with existing methods. A reweighted PDANM (RPDANM) algorithm is proposed to further improve CE accuracy, which iteratively refines CE through a specifically designed reweighing strategy. Building upon RPDANM, we propose an iterative approach named RPDANM with adaptive phase control (RPDANM-APC), which adaptively adjusts the RIS phases based on previously estimated channel parameters to facilitate CE, achieving superior CE accuracy while reducing training overhead. Numerical simulations demonstrate the superiority of our proposed approaches in terms of running time, CE accuracy, and training overhead. In particular, the RPDANM-APC approach can achieve higher CE accuracy than existing methods within less than 40 percent training overhead while reducing the running time by tens of times.

In this paper, we investigate the realization of covert communication in a general radar-communication cooperation system, which includes integrated sensing and communications as a special example. We explore the possibility of utilizing the sensing ability of radar to track and jam the aerial adversary target attempting to detect the transmission. Based on the echoes from the target, the extended Kalman filtering technique is employed to predict its trajectory as well as the corresponding channels. Depending on the maneuvering altitude of adversary target, two channel models are considered, with the aim of maximizing the covert transmission rate by jointly designing the radar waveform and communication transmit beamforming vector based on the constructed channels. For the free-space propagation model, by decoupling the joint design, we propose an efficient algorithm to guarantee that the target cannot detect the transmission. For the Rician fading model, since the multi-path components cannot be estimated, a robust joint transmission scheme is proposed based on the property of the Kullback-Leibler divergence. The convergence behaviour, tracking MSE, false alarm and missed detection probabilities, and covert transmission rate are evaluated. Simulation results show that the proposed algorithms achieve accurate tracking. For both channel models, the proposed sensing-assisted covert transmission design is able to guarantee the covertness, and significantly outperforms the conventional schemes.

Most studies of reflecting intelligent surfaces (RISs)-assisted visible light communication (VLC) systems have focused on the integration of RISs in the channel to combat the line-of-sight (LoS) blockage and to enhance the corresponding achievable data rate. Some recent efforts have investigated the integration of liquid crystal (LC)-RIS in the VLC receiver to also improve the corresponding achievable data rate. To jointly benefit from the previously mentioned appealing capabilities of the RIS technology in both the channel and the receiver, in this work, we propose a novel indoor VLC system that is jointly assisted by a mirror array-based RIS in the channel and an LC-based RIS aided-VLC receiver. To illustrate the performance of the proposed system, a rate maximization problem is formulated, solved, and evaluated. This maximization problem jointly optimizes the roll and yaw angles of the mirror array-based RIS as well as the refractive index of the LC-based RIS VLC receiver. Moreover, this maximization problem considers practical assumptions, such as the presence of non-users blockers in the LoS path between the transmitter-receiver pair and the user's random device orientation (i.e., the user's self-blockage). Due to the non-convexity of the formulated optimization problem, a low-complexity algorithm is utilized to get the global optimal solution. A multi-user scenario of the proposed scheme is also presented. Furthermore, the energy efficiency of the proposed system is also investigated. Simulation results are provided, confirming that the proposed system yields a noteworthy improvement in data rate and energy efficiency performances compared to several baseline schemes.

Beyond-diagonal reconfigurable intelligent surface (BD-RIS) has been proposed recently as a novel and generalized RIS architecture that offers enhanced wave manipulation flexibility and large coverage expansion. However, the beyond-diagonal mathematical model in BD-RIS inevitably introduces additional optimization challenges in beamforming design. In this letter, we derive a closed-form solution for the BD-RIS passive beamforming matrix that maximizes the sum of the effective channel gains among users. We further propose a computationally efficient two-stage beamforming framework to jointly design the active beamforming at the base station and passive beamforming at the BD-RIS to enhance the sum-rate for a BD-RIS aided multi-user multi-antenna network.Numerical results show that our proposed algorithm achieves a higher sum-rate while requiring less computation time compared to state-of-the-art algorithms. The proposed algorithm paves the way for practical beamforming design in BD-RIS aided wireless networks.

Variable independence and decomposability are algorithmic techniques for simplifying logical formulas by tearing apart connections between free variables. These techniques were originally proposed to speed up query evaluation in constraint databases, in particular by representing the query as a Boolean combination of formulas with no interconnected variables. They also have many other applications in SMT, string analysis, databases, automata theory and other areas. However, the precise complexity of variable independence and decomposability has been left open especially for the quantifier-free theory of linear real arithmetic (LRA), which is central in database applications. We introduce a novel characterization of formulas admitting decompositions and use it to show that it is coNP-complete to decide variable decomposability over LRA. As a corollary, we obtain that deciding variable independence is in $ \Sigma_2^p $. These results substantially improve the best known double-exponential time algorithms for variable decomposability and independence. In many practical applications, it is crucial to be able to efficiently eliminate connections between variables whenever possible. We design and implement an algorithm for this problem, which is optimal in theory, exponentially faster compared to the current state-of-the-art algorithm and efficient on various microbenchmarks. In particular, our algorithm is the first one to overcome a fundamental barrier between non-discrete and discrete first-order theories. Formulas arising in practice often have few or even no free variables that are perfectly independent. In this case, our algorithm can compute a best-possible approximation of a decomposition, which can be used to optimize database queries by exploiting partial variable independence, which is present in almost every logical formula or database query constraint.

A proper fusion of complex data is of interest to many researchers in diverse fields, including computational statistics, computational geometry, bioinformatics, machine learning, pattern recognition, quality management, engineering, statistics, finance, economics, etc. It plays a crucial role in: synthetic description of data processes or whole domains, creation of rule bases for approximate reasoning tasks, reaching consensus and selection of the optimal strategy in decision support systems, imputation of missing values, data deduplication and consolidation, record linkage across heterogeneous databases, and clustering. This open-access research monograph integrates the spread-out results from different domains using the methodology of the well-established classical aggregation framework, introduces researchers and practitioners to Aggregation 2.0, as well as points out the challenges and interesting directions for further research.

北京阿比特科技有限公司