亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Beyond-diagonal reconfigurable intelligent surface (BD-RIS) has been proposed recently as a novel and generalized RIS architecture that offers enhanced wave manipulation flexibility and large coverage expansion. However, the beyond-diagonal mathematical model in BD-RIS inevitably introduces additional optimization challenges in beamforming design. In this letter, we derive a closed-form solution for the BD-RIS passive beamforming matrix that maximizes the sum of the effective channel gains among users. We further propose a computationally efficient two-stage beamforming framework to jointly design the active beamforming at the base station and passive beamforming at the BD-RIS to enhance the sum-rate for a BD-RIS aided multi-user multi-antenna network.Numerical results show that our proposed algorithm achieves a higher sum-rate while requiring less computation time compared to state-of-the-art algorithms. The proposed algorithm paves the way for practical beamforming design in BD-RIS aided wireless networks.

相關內容

設計是(shi)對現有(you)狀的(de)一種重(zhong)新認(ren)識(shi)和打破重(zhong)組的(de)過程,設計讓一切變得(de)更美。

Distributed stochastic gradient descent (SGD) with gradient compression has become a popular communication-efficient solution for accelerating distributed learning. One commonly used method for gradient compression is Top-K sparsification, which sparsifies the gradients by a fixed degree during model training. However, there has been a lack of an adaptive approach to adjust the sparsification degree to maximize the potential of the model's performance or training speed. This paper proposes a novel adaptive Top-K in SGD framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance by balancing the trade-off between communication cost and convergence error. Firstly, an upper bound of convergence error is derived for the adaptive sparsification scheme and the loss function. Secondly, an algorithm is designed to minimize the convergence error under the communication cost constraints. Finally, numerical results on the MNIST and CIFAR-10 datasets demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods, even after considering error compensation.

Stable diffusion, a generative model used in text-to-image synthesis, frequently encounters resolution-induced composition problems when generating images of varying sizes. This issue primarily stems from the model being trained on pairs of single-scale images and their corresponding text descriptions. Moreover, direct training on images of unlimited sizes is unfeasible, as it would require an immense number of text-image pairs and entail substantial computational expenses. To overcome these challenges, we propose a two-stage pipeline named Any-Size-Diffusion (ASD), designed to efficiently generate well-composed images of any size, while minimizing the need for high-memory GPU resources. Specifically, the initial stage, dubbed Any Ratio Adaptability Diffusion (ARAD), leverages a selected set of images with a restricted range of ratios to optimize the text-conditional diffusion model, thereby improving its ability to adjust composition to accommodate diverse image sizes. To support the creation of images at any desired size, we further introduce a technique called Fast Seamless Tiled Diffusion (FSTD) at the subsequent stage. This method allows for the rapid enlargement of the ASD output to any high-resolution size, avoiding seaming artifacts or memory overloads. Experimental results on the LAION-COCO and MM-CelebA-HQ benchmarks demonstrate that ASD can produce well-structured images of arbitrary sizes, cutting down the inference time by 2x compared to the traditional tiled algorithm.

Meta learning have achieved promising performance in low-resource text classification which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. However, due to the limited training data in the meta-learning scenario and the inherent properties of parameterized neural networks, poor generalization performance has become a pressing problem that needs to be addressed. To deal with this issue, we propose a meta-learning based method called Retrieval-Augmented Meta Learning(RAML). It not only uses parameterization for inference but also retrieves non-parametric knowledge from an external corpus to make inferences, which greatly alleviates the problem of poor generalization performance caused by the lack of diverse training data in meta-learning. This method differs from previous models that solely rely on parameters, as it explicitly emphasizes the importance of non-parametric knowledge, aiming to strike a balance between parameterized neural networks and non-parametric knowledge. The model is required to determine which knowledge to access and utilize during inference. Additionally, our multi-view passages fusion network module can effectively and efficiently integrate the retrieved information into low-resource classification task. The extensive experiments demonstrate that RAML significantly outperforms current SOTA low-resource text classification models.

We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.

This paper proposes new framework of communication system leveraging promising generation capabilities of multi-modal generative models. Regarding nowadays smart applications, successful communication can be made by conveying the perceptual meaning, which we set as text prompt. Text serves as a suitable semantic representation of image data as it has evolved to instruct an image or generate image through multi-modal techniques, by being interpreted in a manner similar to human cognition. Utilizing text can also reduce the overload compared to transmitting the intact data itself. The transmitter converts objective image to text through multi-model generation process and the receiver reconstructs the image using reverse process. Each word in the text sentence has each syntactic role, responsible for particular piece of information the text contains. For further efficiency in communication load, the transmitter sequentially sends words in priority of carrying the most information until reaches successful communication. Therefore, our primary focus is on the promising design of a communication system based on image-to-text transformation and the proposed schemes for sequentially transmitting word tokens. Our work is expected to pave a new road of utilizing state-of-the-art generative models to real communication systems

The communities of blockchains and distributed ledgers have been stirred up by the introduction of zero-knowledge proofs (ZKPs). Originally designed to solve privacy issues, ZKPs have now evolved into an effective remedy for scalability concerns and are applied in Zcash (internet money like Bitcoin). To enable ZKPs, Rank-1 Constraint Systems (R1CS) offer a verifier for bi-linear equations. To accurately and efficiently represent R1CS, several language tools like Circom, Noir, and Snarky have been proposed to automate the compilation of advanced programs into R1CS. However, due to the flexible nature of R1CS representation, there can be significant differences in the compiled R1CS forms generated from circuit language programs with the same underlying semantics. To address this issue, this paper uses a data-flow-based R1CS paradigm algorithm, which produces a standardized format for different R1CS instances with identical semantics. By using the normalized R1CS format circuits, the complexity of circuits' verification can be reduced. In addition, this paper presents an R1CS normalization algorithm benchmark, and our experimental evaluation demonstrates the effectiveness and correctness of our methods.

Systolic Array (SA) architectures are well suited for accelerating matrix multiplications through the use of a pipelined array of Processing Elements (PEs) communicating with local connections and pre-orchestrated data movements. Even though most of the dynamic power consumption in SAs is due to multiplications and additions, pipelined data movement within the SA constitutes an additional important contributor. The goal of this work is to reduce the dynamic power consumption associated with the feeding of data to the SA, by synergistically applying bus-invert coding and zero-value clock gating. By exploiting salient attributes of state-of-the-art CNNs, such as the value distribution of the weights, the proposed SA applies appropriate encoding only to the data that exhibits high switching activity. Similarly, when one of the inputs is zero, unnecessary operations are entirely skipped. This selectively targeted, application-aware encoding approach is demonstrated to reduce the dynamic power consumption of data streaming in CNN applications using Bfloat16 arithmetic by 1%-19%. This translates to an overall dynamic power reduction of 6.2%-9.4%.

Variational inference, such as the mean-field (MF) approximation, requires certain conjugacy structures for efficient computation. These can impose unnecessary restrictions on the viable prior distribution family and further constraints on the variational approximation family. In this work, we introduce a general computational framework to implement MF variational inference for Bayesian models, with or without latent variables, using the Wasserstein gradient flow (WGF), a modern mathematical technique for realizing a gradient flow over the space of probability measures. Theoretically, we analyze the algorithmic convergence of the proposed approaches, providing an explicit expression for the contraction factor. We also strengthen existing results on MF variational posterior concentration from a polynomial to an exponential contraction, by utilizing the fixed point equation of the time-discretized WGF. Computationally, we propose a new constraint-free function approximation method using neural networks to numerically realize our algorithm. This method is shown to be more precise and efficient than traditional particle approximation methods based on Langevin dynamics.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司