This paper presents hybrid numerical techniques for solving the Boltzmann transport equation formulated by means of low-order equations for angular moments of the angular flux. The moment equations are derived by the projection operator approach. The projected equations are closed exactly using a high-order transport solution. The low-order equations of the hybrid methods are approximated with a finite volume scheme of the second-order accuracy. Functionals defining the closures in the discretized low-order equations are calculated by Monte Carlo techniques. In this study, we analyze effects of statistical noise and discretization error on the accuracy of the hybrid transport solution.
In dynamic operational environments, particularly in collaborative robotics, the inevitability of failures necessitates robust and adaptable recovery strategies. Traditional automated recovery strategies, while effective for predefined scenarios, often lack the flexibility required for on-the-fly task management and adaptation to expected failures. Addressing this gap, we propose a novel approach that models recovery behaviors as adaptable robotic skills, leveraging the Behavior Trees and Motion Generators~(BTMG) framework for policy representation. This approach distinguishes itself by employing reinforcement learning~(RL) to dynamically refine recovery behavior parameters, enabling a tailored response to a wide array of failure scenarios with minimal human intervention. We assess our methodology through a series of progressively challenging scenarios within a peg-in-a-hole task, demonstrating the approach's effectiveness in enhancing operational efficiency and task success rates in collaborative robotics settings. We validate our approach using a dual-arm KUKA robot.
One key aspect differentiating data-driven single- and multi-channel speech enhancement and dereverberation methods is that both the problem formulation and complexity of the solutions are considerably more challenging in the latter case. Additionally, with limited computational resources, it is cumbersome to train models that require the management of larger datasets or those with more complex designs. In this scenario, an unverified hypothesis that single-channel methods can be adapted to multi-channel scenarios simply by processing each channel independently holds significant implications, boosting compatibility between sound scene capture and system input-output formats, while also allowing modern research to focus on other challenging aspects, such as full-bandwidth audio enhancement, competitive noise suppression, and unsupervised learning. This study verifies this hypothesis by comparing the enhancement promoted by a basic single-channel speech enhancement and dereverberation model with two other multi-channel models tailored to separate clean speech from noisy 3D mixes. A direction of arrival estimation model was used to objectively evaluate its capacity to preserve spatial information by comparing the output signals with ground-truth coordinate values. Consequently, a trade-off arises between preserving spatial information with a more straightforward single-channel solution at the cost of obtaining lower gains in intelligibility scores.
This paper addresses the problem of controlling multiple unmanned aerial vehicles (UAVs) cooperating in a formation to carry out a complex task such as surface inspection. We first use the virtual leader-follower model to determine the topology and trajectory of the formation. A double-loop control system combining backstepping and sliding mode control techniques is then designed for the UAVs to track the trajectory. A radial basis function neural network (RBFNN) capable of estimating external disturbances is developed to enhance the robustness of the controller. The stability of the controller is proven by using the Lyapunov theorem. A number of comparisons and software-in-the-loop (SIL) tests have been conducted to evaluate the performance of the proposed controller. The results show that our controller not only outperforms other state-of-the-art controllers but is also sufficient for complex tasks of UAVs such as collecting surface data for inspection. The source code of our controller can be found at //github.com/duynamrcv/rbf_bsmc
This paper presents a new boundary-value problem formulation for quantifying uncertainty induced by the presence of small Brownian noise near transversally stable periodic orbits (limit cycles) and quasiperiodic invariant tori of the deterministic dynamical systems obtained in the absence of noise. The formulation uses adjoints to construct a continuous family of transversal hyperplanes that are invariant under the linearized deterministic flow near the limit cycle or quasiperiodic invariant torus. The intersections with each hyperplane of stochastic trajectories that remain near the deterministic cycle or torus over intermediate times may be approximated by a Gaussian distribution whose covariance matrix can be obtained from the solution to the corresponding boundary-value problem. In the case of limit cycles, the analysis improves upon results in the literature through the explicit use of state-space projections, transversality constraints, and symmetry-breaking parameters that ensure uniqueness of the solution despite the lack of hyperbolicity along the limit cycle. These same innovations are then generalized to the case of a quasiperiodic invariant torus of arbitrary dimension. In each case, a closed-form solution to the covariance boundary-value problem is found in terms of a convergent series. The methodology is validated against the results of numerical integration for two examples of stochastically perturbed limit cycles and one example of a stochastically perturbed two-dimensional quasiperiodic invariant torus. Finally, an implementation of the covariance boundary-value problem in the numerical continuation package coco is applied to analyze the small-noise limit near a two-dimensional quasiperiodic invariant torus in a nonlinear deterministic dynamical system in $\mathbb{R}^4$ that does not support closed-form analysis.
Unmanned aerial vehicles (UAVs) with flexible deployment contribute to enlarging the distance of information transmission to mobile users (MUs) in constrained environment. However, due to the high mobility of both UAVs and MUs, it is challenging to establish an accurate beam towards the target MU with high beam gain in real-time. In this study, UAV base stations (UAV-BSs) consisting of position-known assisted UAVs (A-UAVs) and position-unknown assisted UAVs (U-UAVs) are employed to transmit data to MUs. Specifically, a bi-directional angle-aware beam tracking with adaptive beam reconstruction (BAB-AR) algorithm is proposed to construct an optimal beam that can quickly adapt the movement of the target MU. First, the angle-aware beam tracking is realized within the UAVBSs using a proposed global dynamic crow search algorithm without historical trajectory. Furthermore, the Gaussian process regression model is trained by A-UAVs to predict the azimuth and elevation angles of MUs. Meanwhile, we focus on the beam width and design a time interval adjustment mechanism for adaptive beam reconstruction to track high-speed MUs. Finally, the performance of the BAB-AR algorithm is compared with that of benchmark algorithms, and simulate results verifies that the BAB-AR algorithm can construct an accurate beam capable of covering high-speed MUs with the half power beam width in a timely manner.
This paper presents a distributed model predictive control (DMPC) algorithm for a heterogeneous platoon using arbitrary communication topologies, as long as each vehicle is able to communicate with a preceding vehicle in the platoon. The proposed DMPC algorithm is able to accommodate any spacing policy that is affine in a vehicle's velocity, which includes constant distance or constant time headway spacing policies. By analyzing the total cost for the entire platoon, a sufficient condition is derived to guarantee platoon asymptotic stability. Simulation experiments with a platoon of 50 vehicles and hardware experiments with a platoon of four 1/10th scale vehicles validate the algorithm and compare performance under different spacing policies and communication topologies.
This paper performs the crucial work of establishing a baseline for gaze-driven authentication performance to begin answering fundamental research questions using a very large dataset of gaze recordings from 9202 people with a level of eye tracking (ET) signal quality equivalent to modern consumer-facing virtual reality (VR) platforms. The size of the employed dataset is at least an order-of-magnitude larger than any other dataset from previous related work. Binocular estimates of the optical and visual axes of the eyes and a minimum duration for enrollment and verification are required for our model to achieve a false rejection rate (FRR) of below 3% at a false acceptance rate (FAR) of 1 in 50,000. In terms of identification accuracy which decreases with gallery size, we estimate that our model would fall below chance-level accuracy for gallery sizes of 148,000 or more. Our major findings indicate that gaze authentication can be as accurate as required by the FIDO standard when driven by a state-of-the-art machine learning architecture and a sufficiently large training dataset.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.