亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a pre-registered randomized experiment, we found that, relative to a reverse-chronological baseline, Twitter's engagement-based ranking algorithm may amplify emotionally charged, out-group hostile content and contribute to affective polarization. Furthermore, we critically examine the claim that the algorithm shows users what they want to see, discovering that users do not prefer the political tweets selected by the algorithm. Finally, we explore the implications of an alternative approach to ranking content based on users' stated preferences and find a reduction in angry, partisan, and out-group hostile content but also a potential reinforcement of echo chambers. The evidence underscores the necessity for a more nuanced approach to content ranking that balances engagement, users' stated preferences, and sociopolitical outcomes.

相關內容

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

We study the problem of global optimization, where we analyze the performance of the Piyavskii--Shubert algorithm and its variants. For any given time duration $T$, instead of the extensively studied simple regret (which is the difference of the losses between the best estimate up to $T$ and the global minimum), we study the cumulative regret up to time $T$. For $L$-Lipschitz continuous functions, we show that the cumulative regret is $O(L\log T)$. For $H$-Lipschitz smooth functions, we show that the cumulative regret is $O(H)$. We analytically extend our results for functions with Holder continuous derivatives, which cover both the Lipschitz continuous and the Lipschitz smooth functions, individually. We further show that a simpler variant of the Piyavskii-Shubert algorithm performs just as well as the traditional variants for the Lipschitz continuous or the Lipschitz smooth functions. We further extend our results to broader classes of functions, and show that, our algorithm efficiently determines its queries; and achieves nearly minimax optimal (up to log factors) cumulative regret, for general convex or even concave regularity conditions on the extrema of the objective (which encompasses many preceding regularities). We consider further extensions by investigating the performance of the Piyavskii-Shubert variants in the scenarios with unknown regularity, noisy evaluation and multivariate domain.

In this work, we consider a fundamental task in quantum many-body physics - finding and learning ground states of quantum Hamiltonians and their properties. Recent works have studied the task of predicting the ground state expectation value of sums of geometrically local observables by learning from data. For short-range gapped Hamiltonians, a sample complexity that is logarithmic in the number of qubits and quasipolynomial in the error was obtained. Here we extend these results beyond the local requirements on both Hamiltonians and observables, motivated by the relevance of long-range interactions in molecular and atomic systems. For interactions decaying as a power law with exponent greater than twice the dimension of the system, we recover the same efficient logarithmic scaling with respect to the number of qubits, but the dependence on the error worsens to exponential. Further, we show that learning algorithms equivariant under the automorphism group of the interaction hypergraph achieve a sample complexity reduction, leading in particular to a constant number of samples for learning sums of local observables in systems with periodic boundary conditions. We demonstrate the efficient scaling in practice by learning from DMRG simulations of $1$D long-range and disordered systems with up to $128$ qubits. Finally, we provide an analysis of the concentration of expectation values of global observables stemming from central limit theorem, resulting in increased prediction accuracy.

Recent research has extended beyond assessing the performance of Large Language Models (LLMs) to examining their characteristics from a psychological standpoint, acknowledging the necessity of understanding their behavioral characteristics. The administration of personality tests to LLMs has emerged as a noteworthy area in this context. However, the suitability of employing psychological scales, initially devised for humans, on LLMs is a matter of ongoing debate. Our study aims to determine the reliability of applying personality assessments to LLMs, explicitly investigating whether LLMs demonstrate consistent personality traits. Analyzing responses under 2,500 settings reveals that gpt-3.5-turbo shows consistency in responses to the Big Five Inventory, indicating a high degree of reliability. Furthermore, our research explores the potential of gpt-3.5-turbo to emulate diverse personalities and represent various groups, which is a capability increasingly sought after in social sciences for substituting human participants with LLMs to reduce costs. Our findings reveal that LLMs have the potential to represent different personalities with specific prompt instructions. By shedding light on the personalization of LLMs, our study endeavors to pave the way for future explorations in this field. We have made our experimental results and the corresponding code openly accessible via //github.com/CUHK-ARISE/LLMPersonality.

We apply the U-Net model for compressive light field synthesis. Compared to methods based on stacked CNN and iterative algorithms, this method offers better image quality, uniformity and less computation.

Why do deep neural networks (DNNs) benefit from very high dimensional parameter spaces? Their huge parameter complexities vs. stunning performances in practice is all the more intriguing and not explainable using the standard theory of regular models. In this work, we propose a geometrically flavored information-theoretic approach to study this phenomenon. Namely, we introduce the locally varying dimensionality of the parameter space of neural network models by considering the number of significant dimensions of the Fisher information matrix, and model the parameter space as a manifold using the framework of singular semi-Riemannian geometry. We derive model complexity measures which yield short description lengths for deep neural network models based on their singularity analysis thus explaining the good performance of DNNs despite their large number of parameters.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司