亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Physical laws governing population dynamics are generally expressed as differential equations. Research in recent decades has incorporated fractional-order (non-integer) derivatives into differential models of natural phenomena, such as reaction-diffusion systems. In this paper, we develop a method to numerically solve a multi-component and multi-dimensional space-fractional system. For space discretization, we apply a Fourier spectral method that is suited for multidimensional PDE systems. Efficient approximation of time-stepping is accomplished with a locally one dimensional exponential time differencing approach. We show the effect of different fractional parameters on growth models and consider the convergence, stability, and uniqueness of solutions, as well as the biological interpretation of parameters and boundary conditions.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · GROUP · CASES · 分解的 · 可辨認的 ·
2023 年 2 月 9 日

We provide a new approach for compiling quantum simulation circuits that appear in Trotter, qDRIFT and multi-product formulas to Clifford and non-Clifford operations that can reduce the number of non-Clifford operations by a factor of up to $4$. In fact, the total number of gates reduce in many cases. We show that it is possible to implement an exponentiated sum of commuting Paulis with at most $m$ (controlled)-rotation gates, where $m$ is the number of distinct non-zero eigenvalues (ignoring sign). Thus we can collect mutually commuting Hamiltonian terms into groups that satisfy one of several symmetries identified in this work which allow an inexpensive simulation of the entire group of terms. We further show that the cost can in some cases be reduced by partially allocating Hamiltonian terms to several groups and provide a polynomial time classical algorithm that can greedily allocate the terms to appropriate groupings. We further specifically discuss these optimizations for the case of fermionic dynamics and provide extensive numerical simulations for qDRIFT of our grouping strategy to 6 and 4-qubit Heisenberg models, $LiH$, $H_2$ and observe a factor of 1.8-3.2 reduction in the number of non-Clifford gates. This suggests Trotter-based simulation of chemistry in second quantization may be even more practical than previously believed.

We propose in this paper efficient first/second-order time-stepping schemes for the evolutional Navier-Stokes-Nernst-Planck-Poisson equations. The proposed schemes are constructed using an auxiliary variable reformulation and sophisticated treatment of the terms coupling different equations. By introducing a dynamic equation for the auxiliary variable and reformulating the original equations into an equivalent system, we construct first- and second-order semi-implicit linearized schemes for the underlying problem. The main advantages of the proposed method are: (1) the schemes are unconditionally stable in the sense that a discrete energy keeps decay during the time stepping; (2) the concentration components of the discrete solution preserve positivity and mass conservation; (3) the delicate implementation shows that the proposed schemes can be very efficiently realized, with computational complexity close to a semi-implicit scheme. Some numerical examples are presented to demonstrate the accuracy and performance of the proposed method. As far as the best we know, this is the first second-order method which satisfies all the above properties for the Navier-Stokes-Nernst-Planck-Poisson equations.

This paper is concerned with orthonormal systems in real intervals, given with zero Dirichlet boundary conditions. More specifically, our interest is in systems with a skew-symmetric differentiation matrix (this excludes orthonormal polynomials). We consider a simple construction of such systems and pursue its ramifications. In general, given any $\mathrm{C}^1(a,b)$ weight function such that $w(a)=w(b)=0$, we can generate an orthonormal system with a skew-symmetric differentiation matrix. Except for the case $a=-\infty$, $b=+\infty$, only a limited number of powers of that matrix is bounded and we establish a connection between properties of the weight function and boundedness. In particular, we examine in detail two weight functions: the Laguerre weight function $x^\alpha \mathrm{e}^{-x}$ for $x>0$ and $\alpha>0$ and the ultraspherical weight function $(1-x^2)^\alpha$, $x\in(-1,1)$, $\alpha>0$, and establish their properties. Both weights share a most welcome feature of {\em separability,\/} which allows for fast computation. The quality of approximation is highly sensitive to the choice of $\alpha$ and we discuss how to choose optimally this parameter, depending on the number of zero boundary conditions.

The fractional differential equation $L^\beta u = f$ posed on a compact metric graph is considered, where $\beta>\frac14$ and $L = \kappa - \frac{\mathrm{d}}{\mathrm{d} x}(H\frac{\mathrm{d}}{\mathrm{d} x})$ is a second-order elliptic operator equipped with certain vertex conditions and sufficiently smooth and positive coefficients $\kappa,H$. We demonstrate the existence of a unique solution for a general class of vertex conditions and derive the regularity of the solution in the specific case of Kirchhoff vertex conditions. These results are extended to the stochastic setting when $f$ is replaced by Gaussian white noise. For the deterministic and stochastic settings under generalized Kirchhoff vertex conditions, we propose a numerical solution based on a finite element approximation combined with a rational approximation of the fractional power $L^{-\beta}$. For the resulting approximation, the strong error is analyzed in the deterministic case, and the strong mean squared error as well as the $L_2(\Gamma\times \Gamma)$-error of the covariance function of the solution are analyzed in the stochastic setting. Explicit rates of convergences are derived for all cases. Numerical experiments for the example ${L = \kappa^2 - \Delta, \kappa>0}$ are performed to illustrate the theoretical results.

Objective: Until now, traditional invasive approaches have been the only means being leveraged to diagnose spinal disorders. Traditional manual diagnostics require a high workload, and diagnostic errors are likely to occur due to the prolonged work of physicians. In this research, we develop an expert system based on a hybrid inference algorithm and comprehensive integrated knowledge for assisting the experts in the fast and high-quality diagnosis of spinal disorders. Methods: First, for each spinal anomaly, the accurate and integrated knowledge was acquired from related experts and resources. Second, based on probability distributions and dependencies between symptoms of each anomaly, a unique numerical value known as certainty effect value was assigned to each symptom. Third, a new hybrid inference algorithm was designed to obtain excellent performance, which was an incorporation of the Backward Chaining Inference and Theory of Uncertainty. Results: The proposed expert system was evaluated in two different phases, real-world samples, and medical records evaluation. Evaluations show that in terms of real-world samples analysis, the system achieved excellent accuracy. Application of the system on the sample with anomalies revealed the degree of severity of disorders and the risk of development of abnormalities in unhealthy and healthy patients. In the case of medical records analysis, our expert system proved to have promising performance, which was very close to those of experts. Conclusion: Evaluations suggest that the proposed expert system provides promising performance, helping specialists to validate the accuracy and integrity of their diagnosis. It can also serve as an intelligent educational software for medical students to gain familiarity with spinal disorder diagnosis process, and related symptoms.

In this article we propose a new deep learning approach to solve parametric partial differential equations (PDEs) approximately. In particular, we introduce a new strategy to design specific artificial neural network (ANN) architectures in conjunction with specific ANN initialization schemes which are tailor-made for the particular scientific computing approximation problem under consideration. In the proposed approach we combine efficient classical numerical approximation techniques such as higher-order Runge-Kutta schemes with sophisticated deep (operator) learning methodologies such as the recently introduced Fourier neural operators (FNOs). Specifically, we introduce customized adaptions of existing standard ANN architectures together with specialized initializations for these ANN architectures so that at initialization we have that the ANNs closely mimic a chosen efficient classical numerical algorithm for the considered approximation problem. The obtained ANN architectures and their initialization schemes are thus strongly inspired by numerical algorithms as well as by popular deep learning methodologies from the literature and in that sense we refer to the introduced ANNs in conjunction with their tailor-made initialization schemes as Algorithmically Designed Artificial Neural Networks (ADANNs). We numerically test the proposed ADANN approach in the case of some parametric PDEs. In the tested numerical examples the ADANN approach significantly outperforms existing traditional approximation algorithms as well as existing deep learning methodologies from the literature.

Bayesian inverse problems are often computationally challenging when the forward model is governed by complex partial differential equations (PDEs). This is typically caused by expensive forward model evaluations and high-dimensional parameterization of priors. This paper proposes a domain-decomposed variational auto-encoder Markov chain Monte Carlo (DD-VAE-MCMC) method to tackle these challenges simultaneously. Through partitioning the global physical domain into small subdomains, the proposed method first constructs local deterministic generative models based on local historical data, which provide efficient local prior representations. Gaussian process models with active learning address the domain decomposition interface conditions. Then inversions are conducted on each subdomain independently in parallel and in low-dimensional latent parameter spaces. The local inference solutions are post-processed through the Poisson image blending procedure to result in an efficient global inference result. Numerical examples are provided to demonstrate the performance of the proposed method.

We present an efficient quantum algorithm to simulate nonlinear differential equations with polynomial vector fields of arbitrary degree on quantum platforms. Models of physical systems that are governed by ordinary differential equations (ODEs) or partial differential equation (PDEs) can be challenging to solve on classical computers due to high dimensionality, stiffness, nonlinearities, and sensitive dependence to initial conditions. For sparse $n$-dimensional linear ODEs, quantum algorithms have been developed which can produce a quantum state proportional to the solution in poly(log(nx)) time using the quantum linear systems algorithm (QLSA). Recently, this framework was extended to systems of nonlinear ODEs with quadratic polynomial vector fields by applying Carleman linearization that enables the embedding of the quadratic system into an approximate linear form. A detailed complexity analysis was conducted which showed significant computational advantage under certain conditions. We present an extension of this algorithm to deal with systems of nonlinear ODEs with $k$-th degree polynomial vector fields for arbitrary (finite) values of $k$. The steps involve: 1) mapping the $k$-th degree polynomial ODE to a higher dimensional quadratic polynomial ODE; 2) applying Carleman linearization to transform the quadratic ODE to an infinite-dimensional system of linear ODEs; 3) truncating and discretizing the linear ODE and solving using the forward Euler method and QLSA. Alternatively, one could apply Carleman linearization directly to the $k$-th degree polynomial ODE, resulting in a system of infinite-dimensional linear ODEs, and then apply step 3. This solution route can be computationally more efficient. We present detailed complexity analysis of the proposed algorithms, prove polynomial scaling of runtime on $k$ and demonstrate the framework on an example.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司