We propose a new sensitivity analysis model that combines copulas and normalizing flows for causal inference under unobserved confounding. We refer to the new model as $\rho$-GNF ($\rho$-Graphical Normalizing Flow), where $\rho{\in}[-1,+1]$ is a bounded sensitivity parameter representing the backdoor non-causal association due to unobserved confounding modeled using the most well studied and widely popular Gaussian copula. Specifically, $\rho$-GNF enables us to estimate and analyse the frontdoor causal effect or average causal effect (ACE) as a function of $\rho$. We call this the $\rho_{curve}$. The $\rho_{curve}$ enables us to specify the confounding strength required to nullify the ACE. We call this the $\rho_{value}$. Further, the $\rho_{curve}$ also enables us to provide bounds for the ACE given an interval of $\rho$ values. We illustrate the benefits of $\rho$-GNF with experiments on simulated and real-world data in terms of our empirical ACE bounds being narrower than other popular ACE bounds.
Reliability-oriented sensitivity analysis aims at combining both reliability and sensitivity analyses by quantifying the influence of each input variable of a numerical model on a quantity of interest related to its failure. In particular, target sensitivity analysis focuses on the occurrence of the failure, and more precisely aims to determine which inputs are more likely to lead to the failure of the system. The Shapley effects are quantitative global sensitivity indices which are able to deal with correlated input variables. They have been recently adapted to the target sensitivity analysis framework. In this article, we investigate two importance-sampling-based estimation schemes of these indices which are more efficient than the existing ones when the failure probability is small. Moreover, an extension to the case where only an i.i.d. input/output N-sample distributed according to the importance sampling auxiliary distribution is proposed. This extension allows to estimate the Shapley effects only with a data set distributed according to the importance sampling auxiliary distribution stemming from a reliability analysis without additional calls to the numerical model. In addition, we study theoretically the absence of bias of some estimators as well as the benefit of importance sampling. We also provide numerical guidelines and finally, realistic test cases show the practical interest of the proposed methods.
Markov decision processes (MDPs) are formal models commonly used in sequential decision-making. MDPs capture the stochasticity that may arise, for instance, from imprecise actuators via probabilities in the transition function. However, in data-driven applications, deriving precise probabilities from (limited) data introduces statistical errors that may lead to unexpected or undesirable outcomes. Uncertain MDPs (uMDPs) do not require precise probabilities but instead use so-called uncertainty sets in the transitions, accounting for such limited data. Tools from the formal verification community efficiently compute robust policies that provably adhere to formal specifications, like safety constraints, under the worst-case instance in the uncertainty set. We continuously learn the transition probabilities of an MDP in a robust anytime-learning approach that combines a dedicated Bayesian inference scheme with the computation of robust policies. In particular, our method (1) approximates probabilities as intervals, (2) adapts to new data that may be inconsistent with an intermediate model, and (3) may be stopped at any time to compute a robust policy on the uMDP that faithfully captures the data so far. Furthermore, our method is capable of adapting to changes in the environment. We show the effectiveness of our approach and compare it to robust policies computed on uMDPs learned by the UCRL2 reinforcement learning algorithm in an experimental evaluation on several benchmarks.
Performing (variance-based) global sensitivity analysis (GSA) with dependent inputs has recently benefited from cooperative game theory concepts.By using this theory, despite the potential correlation between the inputs, meaningful sensitivity indices can be defined via allocation shares of the model output's variance to each input. The ``Shapley effects'', i.e., the Shapley values transposed to variance-based GSA problems, allowed for this suitable solution. However, these indices exhibit a particular behavior that can be undesirable: an exogenous input (i.e., which is not explicitly included in the structural equations of the model) can be associated with a strictly positive index when it is correlated to endogenous inputs. In the present work, the use of a different allocation, called the ``proportional values'' is investigated. A first contribution is to propose an extension of this allocation, suitable for variance-based GSA. Novel GSA indices are then proposed, called the ``proportional marginal effects'' (PME). The notion of exogeneity is formally defined in the context of variance-based GSA, and it is shown that the PME allow the distinction of exogenous variables, even when they are correlated to endogenous inputs. Moreover, their behavior is compared to the Shapley effects on analytical toy-cases and more realistic use-cases.
We study a variant of classical clustering formulations in the context of algorithmic fairness, known as diversity-aware clustering. In this variant we are given a collection of facility subsets, and a solution must contain at least a specified number of facilities from each subset while simultaneously minimizing the clustering objective ($k$-median or $k$-means). We investigate the fixed-parameter tractability of these problems and show several negative hardness and inapproximability results, even when we afford exponential running time with respect to some parameters. Motivated by these results we identify natural parameters of the problem, and present fixed-parameter approximation algorithms with approximation ratios $\big(1 + \frac{2}{e} +\epsilon \big)$ and $\big(1 + \frac{8}{e}+ \epsilon \big)$ for diversity-aware $k$-median and diversity-aware $k$-means respectively, and argue that these ratios are essentially tight assuming the gap-exponential time hypothesis. We also present a simple and more practical bicriteria approximation algorithm with better running time bounds. We finally propose efficient and practical heuristics. We evaluate the scalability and effectiveness of our methods in a wide variety of rigorously conducted experiments, on both real and synthetic data.
In randomized experiments and observational studies, weighting methods are often used to generalize and transport treatment effect estimates to a target population. Traditional methods construct the weights by separately modeling the treatment assignment and study selection probabilities and then multiplying functions (e.g., inverses) of their estimates. However, these estimated multiplicative weights may not produce adequate covariate balance and can be highly variable, resulting in biased and unstable estimators, especially when there is limited covariate overlap across populations or treatment groups. To address these limitations, we propose a general weighting approach that weights each treatment group towards the target population in a single step. We present a framework and provide a justification for this one-step approach in terms of generic probability distributions. We show a formal connection between our method and inverse probability and inverse odds weighting. By construction, the proposed approach balances covariates and produces stable estimators. We show that our estimator for the target average treatment effect is consistent, asymptotically Normal, multiply robust, and semiparametrically efficient. We demonstrate the performance of this approach using a simulation study and a randomized case study on the effects of physician racial diversity on preventive healthcare utilization among Black men in California.
Working with SEM and crosssectional data, and depending on the studied phenomenon, assuming an acyclic model may mean that we obtain only a partial view of the mechanisms that explain causal relationships between a set of theoretical constructs, treated as antecedents and consequences. Our twogiven that variables are step approach allows researchers to identify and measure cyclic effects when working with cross algorithm. Using the resources and appropriation tsectional data and a PLS modelling heory and the sequential model of internet appropriation, w e demonstrate the importance of considering cyclic effects. Our results show that opportunities for physical access followed by digital skills acquisition enhance internet usage (acyclic effects), but also that internet usage intensity, in reverse, reinforces both digital skills and physical access (cyclic effects), supporting Norris (2001) social stratification hypothesis regarding future evolution of the digital divide.
We provide adaptive inference methods, based on $\ell_1$ regularization, for regular (semi-parametric) and non-regular (nonparametric) linear functionals of the conditional expectation function. Examples of regular functionals include average treatment effects, policy effects, and derivatives. Examples of non-regular functionals include average treatment effects, policy effects, and derivatives conditional on a covariate subvector fixed at a point. We construct a Neyman orthogonal equation for the target parameter that is approximately invariant to small perturbations of the nuisance parameters. To achieve this property, we include the Riesz representer for the functional as an additional nuisance parameter. Our analysis yields weak ``double sparsity robustness'': either the approximation to the regression or the approximation to the representer can be ``completely dense'' as long as the other is sufficiently ``sparse''. Our main results are non-asymptotic and imply asymptotic uniform validity over large classes of models, translating into honest confidence bands for both global and local parameters.
Today, an increasing number of Adaptive Deep Neural Networks (AdNNs) are being used on resource-constrained embedded devices. We observe that, similar to traditional software, redundant computation exists in AdNNs, resulting in considerable performance degradation. The performance degradation is dependent on the input and is referred to as input-dependent performance bottlenecks (IDPBs). To ensure an AdNN satisfies the performance requirements of resource-constrained applications, it is essential to conduct performance testing to detect IDPBs in the AdNN. Existing neural network testing methods are primarily concerned with correctness testing, which does not involve performance testing. To fill this gap, we propose DeepPerform, a scalable approach to generate test samples to detect the IDPBs in AdNNs. We first demonstrate how the problem of generating performance test samples detecting IDPBs can be formulated as an optimization problem. Following that, we demonstrate how DeepPerform efficiently handles the optimization problem by learning and estimating the distribution of AdNNs' computational consumption. We evaluate DeepPerform on three widely used datasets against five popular AdNN models. The results show that DeepPerform generates test samples that cause more severe performance degradation (FLOPs: increase up to 552\%). Furthermore, DeepPerform is substantially more efficient than the baseline methods in generating test inputs(runtime overhead: only 6-10 milliseconds).
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.