亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study various aspects of the first-order transduction quasi-order, which provides a way of measuring the relative complexity of classes of structures based on whether one can encode the other using a formula of first-order (FO) logic. In contrast with the conjectured simplicity of the transduction quasi-order for monadic second-order logic, the FO-transduction quasi-order is very complex; in particular, we prove that the quotient partial order is not a lattice, although it is a bounded distributive join-semilattice, as is the subposet of additive classes. Many standard properties from structural graph theory and model theory naturally appear in this quasi-order. For example, we characterize transductions of paths, cubic graphs, and cubic trees in terms of bandwidth, bounded degree, and treewidth. We establish that the classes of all graphs with pathwidth at most~$k$, for $k\geq 1$, form a strict hierarchy in the FO-transduction quasi-order and leave open whether same is true for treewidth. This leads to considering whether properties admit maximum or minimum classes in this quasi-order. We prove that many properties do not admit a maximum class, and that star forests are the minimum class that is not a transduction of a class with bounded degree, which can be seen as an instance of transduction duality. We close with a notion of dense analogues of sparse classes, and discuss several related conjectures. As a ubiquitous tool in our results, we prove a normal form for FO-transductions that manifests the locality of FO logic. This is among several other technical results about FO-transductions which we anticipate being broadly useful.

相關內容

We introduce a novel algorithm that converges to level-set convex viscosity solutions of high-dimensional Hamilton-Jacobi equations. The algorithm is applicable to a broad class of curvature motion PDEs, as well as a recently developed Hamilton-Jacobi equation for the Tukey depth, which is a statistical depth measure of data points. A main contribution of our work is a new monotone scheme for approximating the direction of the gradient, which allows for monotone discretizations of pure partial derivatives in the direction of, and orthogonal to, the gradient. We provide a convergence analysis of the algorithm on both regular Cartesian grids and unstructured point clouds in any dimension and present numerical experiments that demonstrate the effectiveness of the algorithm in approximating solutions of the affine flow in two dimensions and the Tukey depth measure of high-dimensional datasets such as MNIST and FashionMNIST.

We propose a novel surrogate modelling approach to efficiently and accurately approximate the response of complex dynamical systems driven by time-varying exogenous excitations over extended time periods. Our approach, namely manifold nonlinear autoregressive modelling with exogenous input (mNARX), involves constructing a problem-specific exogenous input manifold that is optimal for constructing autoregressive surrogates. The manifold, which forms the core of mNARX, is constructed incrementally by incorporating the physics of the system, as well as prior expert- and domain- knowledge. Because mNARX decomposes the full problem into a series of smaller sub-problems, each with a lower complexity than the original, it scales well with the complexity of the problem, both in terms of training and evaluation costs of the final surrogate. Furthermore, mNARX synergizes well with traditional dimensionality reduction techniques, making it highly suitable for modelling dynamical systems with high-dimensional exogenous inputs, a class of problems that is typically challenging to solve. Since domain knowledge is particularly abundant in physical systems, such as those found in civil and mechanical engineering, mNARX is well suited for these applications. We demonstrate that mNARX outperforms traditional autoregressive surrogates in predicting the response of a classical coupled spring-mass system excited by a one-dimensional random excitation. Additionally, we show that mNARX is well suited for emulating very high-dimensional time- and state-dependent systems, even when affected by active controllers, by surrogating the dynamics of a realistic aero-servo-elastic onshore wind turbine simulator. In general, our results demonstrate that mNARX offers promising prospects for modelling complex dynamical systems, in terms of accuracy and efficiency.

We investigate a family of approximate multi-step proximal point methods, accelerated by implicit linear discretizations of gradient flow. The resulting methods are multi-step proximal point methods, with similar computational cost in each update as the proximal point method. We explore several optimization methods where applying an approximate multistep proximal points method results in improved convergence behavior. We argue that this is the result of the lowering of truncation error in approximating gradient flow

Static stability in economic models means negative incentives for deviation from equilibrium strategies, which we expect to assure a return to equilibrium, i.e., dynamic stability, as long as agents respond to incentives. There have been many attempts to prove this link, especially in evolutionary game theory, yielding both negative and positive results. This paper presents a universal and intuitive approach to this link. We prove that static stability assures dynamic stability if agents' choices of switching strategies are rationalizable by introducing costs and constraints in those switching decisions. This idea guides us to define \textit{net }gains from switches as the payoff improvement after deducting the costs. Under rationalizable dynamics, an agent maximizes the expected net gain subject to the constraints. We prove that the aggregate maximized expected net gain works as a Lyapunov function. It also explains reasons behind the known negative results. While our analysis here is confined to myopic evolutionary dynamics in population games, our approach is applicable to more complex situations.

We give an adequate, concrete, categorical-based model for Lambda-S, which is a typed version of a linear-algebraic lambda calculus, extended with measurements. Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi: to forbid duplication of variables, and to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S have a superposition constructor S such that a type A is considered as the base of a vector space while SA is its span. Our model considers S as the composition of two functors in an adjunction relation between the category of sets and the category of vector spaces over C. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.

We discuss computing with hierarchies of families of (potentially weighted) semiclassical Jacobi polynomials which arise in the construction of multivariate orthogonal polynomials. In particular, we outline how to build connection and differentiation matrices with optimal complexity and compute analysis and synthesis operations in quasi-optimal complexity. We investigate a particular application of these results to constructing orthogonal polynomials in annuli, called the generalised Zernike annular polynomials, which lead to sparse discretisations of partial differential equations. We compare against a scaled-and-shifted Chebyshev--Fourier series showing that in general the annular polynomials converge faster when approximating smooth functions and have better conditioning. We also construct a sparse spectral element method by combining disk and annulus cells, which is highly effective for solving PDEs with radially discontinuous variable coefficients and data.

A recent body of work has demonstrated that Transformer embeddings can be linearly decomposed into well-defined sums of factors, that can in turn be related to specific network inputs or components. There is however still a dearth of work studying whether these mathematical reformulations are empirically meaningful. In the present work, we study representations from machine-translation decoders using two of such embedding decomposition methods. Our results indicate that, while decomposition-derived indicators effectively correlate with model performance, variation across different runs suggests a more nuanced take on this question. The high variability of our measurements indicate that geometry reflects model-specific characteristics more than it does sentence-specific computations, and that similar training conditions do not guarantee similar vector spaces.

We investigate block diagonal and hierarchical nested stochastic multivariate Gaussian models by studying their sample cross-correlation matrix on high dimensions. By performing numerical simulations, we compare a filtered sample cross-correlation with the population cross-correlation matrices by using several rotationally invariant estimators (RIE) and hierarchical clustering estimators (HCE) under several loss functions. We show that at large but finite sample size, sample cross-correlation filtered by RIE estimators are often outperformed by HCE estimators for several of the loss functions. We also show that for block models and for hierarchically nested block models the best determination of the filtered sample cross-correlation is achieved by introducing two-step estimators combining state-of-the-art non-linear shrinkage models with hierarchical clustering estimators.

The increasing number of scientific publications in acoustics, in general, presents difficulties in conducting traditional literature surveys. This work explores the use of a generative pre-trained transformer (GPT) model to automate a literature survey of 116 articles on data-driven speech enhancement methods. The main objective is to evaluate the capabilities and limitations of the model in providing accurate responses to specific queries about the papers selected from a reference human-based survey. While we see great potential to automate literature surveys in acoustics, improvements are needed to address technical questions more clearly and accurately.

The emergence of complex structures in the systems governed by a simple set of rules is among the most fascinating aspects of Nature. The particularly powerful and versatile model suitable for investigating this phenomenon is provided by cellular automata, with the Game of Life being one of the most prominent examples. However, this simplified model can be too limiting in providing a tool for modelling real systems. To address this, we introduce and study an extended version of the Game of Life, with the dynamical process governing the rule selection at each step. We show that the introduced modification significantly alters the behaviour of the game. We also demonstrate that the choice of the synchronization policy can be used to control the trade-off between the stability and the growth in the system.

北京阿比特科技有限公司