亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper categorizes the parameterized complexity of the algorithmic problems Perfect Phylogeny and Triangulating Colored Graphs when parameterized by the number of genes and colors, respectively. We show that they are complete for the parameterized complexity class XALP using a reduction from Tree-chained Multicolor Independent Set and a proof of membership. We introduce the problem Triangulating Multicolored Graphs as a stepping stone and prove XALP-completeness for this problem as well. We also show that, assuming the Exponential Time Hypothesis, there exists no algorithm that solves any of these problems in time $f(k) n^{o(k)}$, where $n$ is the input size, $k$ the parameter, and $f$ any computable function.

相關內容

Distributed inference is a popular approach for efficient DNN inference at the edge. However, traditional Static and Dynamic DNNs are not distribution-friendly, causing system reliability and adaptability issues. In this paper, we introduce Fluid Dynamic DNNs (Fluid DyDNNs), tailored for distributed inference. Distinct from Static and Dynamic DNNs, Fluid DyDNNs utilize a novel nested incremental training algorithm to enable independent and combined operation of its sub-networks, enhancing system reliability and adaptability. Evaluation on embedded Arm CPUs with a DNN model and the MNIST dataset, shows that in scenarios of single device failure, Fluid DyDNNs ensure continued inference, whereas Static and Dynamic DNNs fail. When devices are fully operational, Fluid DyDNNs can operate in either a High-Accuracy mode and achieve comparable accuracy with Static DNNs, or in a High-Throughput mode and achieve 2.5x and 2x throughput compared with Static and Dynamic DNNs, respectively.

Maximal Extractable Value (MEV) searching has gained prominence on the Ethereum blockchain since the surge in Decentralized Finance activities. In Ethereum, MEV extraction primarily hinges on fee payments to block proposers. However, in First-Come-First-Served (FCFS) blockchain networks, the focus shifts to latency optimizations, akin to High-Frequency Trading in Traditional Finance. This paper illustrates the dynamics of the MEV extraction game in an FCFS network, specifically Algorand. We introduce an arbitrage detection algorithm tailored to the unique time constraints of FCFS networks and assess its effectiveness. Additionally, our experiments investigate potential optimizations in Algorand's network layer to secure optimal execution positions. Our analysis reveals that while the states of relevant trading pools are updated approximately every six blocks on median, pursuing MEV at the block state level is not viable on Algorand, as arbitrage opportunities are typically executed within the blocks they appear. Our algorithm's performance under varying time constraints underscores the importance of timing in arbitrage discovery. Furthermore, our network-level experiments identify critical transaction prioritization strategies for Algorand's FCFS network. Key among these is reducing latency in connections with relays that are well-connected to high-staked proposers.

To mitigate the high inference latency stemming from autoregressive decoding in Large Language Models (LLMs), Speculative Decoding has emerged as a novel decoding paradigm for LLM inference. In each decoding step, this method first efficiently drafts several future tokens and then verifies them in parallel. Unlike autoregressive decoding, Speculative Decoding facilitates the simultaneous decoding of multiple tokens per step, thereby accelerating inference. This paper presents a comprehensive overview and analysis of this promising decoding paradigm. We begin by providing a formal definition and formulation of Speculative Decoding. Then, we organize in-depth discussions on its key facets, including current leading techniques, the challenges faced, and potential future directions in this field. We aim for this work to serve as a catalyst for further research on Speculative Decoding, ultimately contributing to more efficient LLM inference.

Visual Grounding (VG) methods in Visual Question Answering (VQA) attempt to improve VQA performance by strengthening a model's reliance on question-relevant visual information. The presence of such relevant information in the visual input is typically assumed in training and testing. This assumption, however, is inherently flawed when dealing with imperfect image representations common in large-scale VQA, where the information carried by visual features frequently deviates from expected ground-truth contents. As a result, training and testing of VG-methods is performed with largely inaccurate data, which obstructs proper assessment of their potential benefits. In this work, we demonstrate that current evaluation schemes for VG-methods are problematic due to the flawed assumption of availability of relevant visual information. Our experiments show that the potential benefits of these methods are severely underestimated as a result.

Sequential algorithms for the Stable Matching Problem are often too slow in the context of some large scale applications like switch scheduling. Parallel architectures can offer a notable decrease in runtime complexity. We propose a stable matching algorithm using n^2 processors that converges in O(nlog(n)) average runtime. The algorithm is structurally based on the Parallel Iterative Improvement (PII) algorithm, which successfully finds a stable matching in approximately 90% of cases. We suggest alternative selection methods for pairs in the PII algorithm, called Right-Minimum and Dynamic Selection, resulting in full convergence over 3.3 million trials and generally much faster termination.

Artificial Intelligence (AI), particularly through the advent of large-scale generative AI (GenAI) models such as Large Language Models (LLMs), has become a transformative element in contemporary technology. While these models have unlocked new possibilities, they simultaneously present significant challenges, such as concerns over data privacy and the propensity to generate misleading or fabricated content. Current frameworks for Responsible AI (RAI) often fall short in providing the granular guidance necessary for tangible application, especially for Accountability-a principle that is pivotal for ensuring transparent and auditable decision-making, bolstering public trust, and meeting increasing regulatory expectations. This study bridges the accountability gap by introducing a comprehensive metrics catalogue, formulated through a systematic multivocal literature review (MLR) that integrates findings from both academic and grey literature. Our catalogue delineates process metrics that underpin procedural integrity, resource metrics that provide necessary tools and frameworks, and product metrics that reflect the outputs of AI systems. This tripartite framework is designed to operationalize Accountability in AI, with a special emphasis on addressing the intricacies of GenAI. The proposed metrics catalogue provides a robust framework for instilling Accountability in AI systems. It offers practical, actionable guidance for organizations, thereby shaping responsible practices in the field.

This research investigates the transferability of Automatic Speech Recognition (ASR)-robust Natural Language Understanding (NLU) models from controlled experimental conditions to practical, real-world applications. Focused on smart home automation commands in Urdu, the study assesses model performance under diverse noise profiles, linguistic variations, and ASR error scenarios. Leveraging the UrduBERT model, the research employs a systematic methodology involving real-world data collection, cross-validation, transfer learning, noise variation studies, and domain adaptation. Evaluation metrics encompass task-specific accuracy, latency, user satisfaction, and robustness to ASR errors. The findings contribute insights into the challenges and adaptability of ASR-robust NLU models in transcending controlled environments.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司