亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Visualizations have played a crucial role in helping quantum computing users explore quantum states in various quantum computing applications. Among them, Bloch Sphere is the widely-used visualization for showing quantum states, which leverages angles to represent quantum amplitudes. However, it cannot support the visualization of quantum entanglement and superposition, the two essential properties of quantum computing. To address this issue, we propose VENUS, a novel visualization for quantum state representation. By explicitly correlating 2D geometric shapes based on the math foundation of quantum computing characteristics, VENUS effectively represents quantum amplitudes of both the single qubit and two qubits for quantum entanglement. Also, we use multiple coordinated semicircles to naturally encode probability distribution, making the quantum superposition intuitive to analyze. We conducted two well-designed case studies and an in-depth expert interview to evaluate the usefulness and effectiveness of VENUS. The result shows that VENUS can effectively facilitate the exploration of quantum states for the single qubit and two qubits.

相關內容

Quantum technology is increasingly relying on specialised statistical inference methods for analysing quantum measurement data. This motivates the development of "quantum statistics", a field that is shaping up at the overlap of quantum physics and "classical" statistics. One of the less investigated topics to date is that of statistical inference for infinite dimensional quantum systems, which can be seen as quantum counterpart of non-parametric statistics. In this paper we analyse the asymptotic theory of quantum statistical models consisting of ensembles of quantum systems which are identically prepared in a pure state. In the limit of large ensembles we establish the local asymptotic equivalence (LAE) of this i.i.d. model to a quantum Gaussian white noise model. We use the LAE result in order to establish minimax rates for the estimation of pure states belonging to Hermite-Sobolev classes of wave functions. Moreover, for quadratic functional estimation of the same states we note an elbow effect in the rates, whereas for testing a pure state a sharp parametric rate is attained over the nonparametric Hermite-Sobolev class.

Qubit Mapping is an essential step in realizing quantum circuits on actual hardware devices. However, due to the high complexity of this problem, current solutions can only work on circuits in fairly small scales (i.e. $<50$ qubits). In this paper, we propose a qubit mapping methodology which, to the best of our knowledge, is the first framework to handle very large quantum circuits (i.e. thousands of qubits) towards the quantum advantage. Our novel routing algorithm, Duostra, can efficiently identify the optimal routing path for a given two-qubit gate to operate on physical qubits through swap-gate insertions, and our scheduling heuristic offers the flexibility to strike the balance in optimizing the performance and pursuing the scalability. Experimental results show that our method runs $10$ times faster than the state-of-the-art approaches, while on average can still outperform them by over $5\%$ in terms of the execution time of the quantum circuits. More specifically, our proposed algorithm can complete the qubit mapping of an $11,969$-qubit Quantum Fourier Transform circuit within five hours.

Quantum generative models, in providing inherently efficient sampling strategies, show promise for achieving a near-term advantage on quantum hardware. Nonetheless, important questions remain regarding their scalability. In this work, we investigate the barriers to the trainability of quantum generative models posed by barren plateaus and exponential loss concentration. We explore the interplay between explicit and implicit models and losses, and show that using implicit generative models (such as quantum circuit-based models) with explicit losses (such as the KL divergence) leads to a new flavour of barren plateau. In contrast, the Maximum Mean Discrepancy (MMD), which is a popular example of an implicit loss, can be viewed as the expectation value of an observable that is either low-bodied and trainable, or global and untrainable depending on the choice of kernel. However, in parallel, we highlight that the low-bodied losses required for trainability cannot in general distinguish high-order correlations, leading to a fundamental tension between exponential concentration and the emergence of spurious minima. We further propose a new local quantum fidelity-type loss which, by leveraging quantum circuits to estimate the quality of the encoded distribution, is both faithful and enjoys trainability guarantees. Finally, we compare the performance of different loss functions for modelling real-world data from the High-Energy-Physics domain and confirm the trends predicted by our theoretical results.

Proactive dialogue systems, related to a wide range of real-world conversational applications, equip the conversational agent with the capability of leading the conversation direction towards achieving pre-defined targets or fulfilling certain goals from the system side. It is empowered by advanced techniques to progress to more complicated tasks that require strategical and motivational interactions. In this survey, we provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues. Furthermore, we discuss challenges that meet the real-world application needs but require a greater research focus in the future. We hope that this first survey of proactive dialogue systems can provide the community with a quick access and an overall picture to this practical problem, and stimulate more progresses on conversational AI to the next level.

Quantum Natural Language Processing (QNLP) deals with the design and implementation of NLP models intended to be run on quantum hardware. In this paper, we present results on the first NLP experiments conducted on Noisy Intermediate-Scale Quantum (NISQ) computers for datasets of size greater than 100 sentences. Exploiting the formal similarity of the compositional model of meaning by Coecke, Sadrzadeh and Clark (2010) with quantum theory, we create representations for sentences that have a natural mapping to quantum circuits. We use these representations to implement and successfully train NLP models that solve simple sentence classification tasks on quantum hardware. We conduct quantum simulations that compare the syntax-sensitive model of Coecke et al. with two baselines that use less or no syntax; specifically, we implement the quantum analogues of a "bag-of-words" model, where syntax is not taken into account at all, and of a word-sequence model, where only word order is respected. We demonstrate that all models converge smoothly both in simulations and when run on quantum hardware, and that the results are the expected ones based on the nature of the tasks and the datasets used. Another important goal of this paper is to describe in a way accessible to AI and NLP researchers the main principles, process and challenges of experiments on quantum hardware. Our aim in doing this is to take the first small steps in this unexplored research territory and pave the way for practical Quantum Natural Language Processing.

Entanglement represents ``\textit{the}'' key resource for several applications of quantum information processing, ranging from quantum communications to distributed quantum computing. Despite its fundamental importance, deterministic generation of maximally entangled qubits represents an on-going open problem. Here, we design a novel generation scheme exhibiting two attractive features, namely, i) deterministically generating different classes -- namely, GHZ-like, W-like and graph states -- of genuinely multipartite entangled states, ii) without requiring any direct interaction between the qubits. Indeed, the only necessary condition is the possibility of coherently controlling -- according to the indefinite causal order framework -- the causal order among the unitaries acting on the qubits. Through the paper, we analyze and derive the conditions on the unitaries for deterministic generation, and we provide examples for unitaries practical implementation. We conclude the paper by discussing the scalability of the proposed scheme to higher dimensional genuine multipartite entanglement (GME) states and by introducing some possible applications of the proposal for quantum networks.

Existing datasets for autonomous driving (AD) often lack diversity and long-range capabilities, focusing instead on 360{\deg} perception and temporal reasoning. To address this gap, we introduce Zenseact Open Dataset (ZOD), a large-scale and diverse multimodal dataset collected over two years in various European countries, covering an area 9x that of existing datasets. ZOD boasts the highest range and resolution sensors among comparable datasets, coupled with detailed keyframe annotations for 2D and 3D objects (up to 245m), road instance/semantic segmentation, traffic sign recognition, and road classification. We believe that this unique combination will facilitate breakthroughs in long-range perception and multi-task learning. The dataset is composed of Frames, Sequences, and Drives, designed to encompass both data diversity and support for spatio-temporal learning, sensor fusion, localization, and mapping. Frames consist of 100k curated camera images with two seconds of other supporting sensor data, while the 1473 Sequences and 29 Drives include the entire sensor suite for 20 seconds and a few minutes, respectively. ZOD is the only large-scale AD dataset released under a permissive license, allowing for both research and commercial use. The dataset is accompanied by an extensive development kit. Data and more information are available online (//zod.zenseact.com).

This article introduces new multiplicative updates for nonnegative matrix factorization with the $\beta$-divergence and sparse regularization of one of the two factors (say, the activation matrix). It is well known that the norm of the other factor (the dictionary matrix) needs to be controlled in order to avoid an ill-posed formulation. Standard practice consists in constraining the columns of the dictionary to have unit norm, which leads to a nontrivial optimization problem. Our approach leverages a reparametrization of the original problem into the optimization of an equivalent scale-invariant objective function. From there, we derive block-descent majorization-minimization algorithms that result in simple multiplicative updates for either $\ell_{1}$-regularization or the more "aggressive" log-regularization. In contrast with other state-of-the-art methods, our algorithms are universal in the sense that they can be applied to any $\beta$-divergence (i.e., any value of $\beta$) and that they come with convergence guarantees. We report numerical comparisons with existing heuristic and Lagrangian methods using various datasets: face images, an audio spectrogram, hyperspectral data, and song play counts. We show that our methods obtain solutions of similar quality at convergence (similar objective values) but with significantly reduced CPU times.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.

北京阿比特科技有限公司