亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The past decade has witnessed the rapid development of geospatial artificial intelligence (GeoAI) primarily due to the ground-breaking achievements in deep learning and machine learning. A growing number of scholars from cartography have demonstrated successfully that GeoAI can accelerate previously complex cartographic design tasks and even enable cartographic creativity in new ways. Despite the promise of GeoAI, researchers and practitioners have growing concerns about the ethical issues of GeoAI for cartography. In this paper, we conducted a systematic content analysis and narrative synthesis of research studies integrating GeoAI and cartography to summarize current research and development trends regarding the usage of GeoAI for cartographic design. Based on this review and synthesis, we first identify dimensions of GeoAI methods for cartography such as data sources, data formats, map evaluations, and six contemporary GeoAI models, each of which serves a variety of cartographic tasks. These models include decision trees, knowledge graph and semantic web technologies, deep convolutional neural networks, generative adversarial networks, graph neural networks, and reinforcement learning. Further, we summarize seven cartographic design applications where GeoAI have been effectively employed: generalization, symbolization, typography, map reading, map interpretation, map analysis, and map production. We also raise five potential ethical challenges that need to be addressed in the integration of GeoAI for cartography: commodification, responsibility, privacy, bias, and (together) transparency, explainability, and provenance. We conclude by identifying four potential research directions for future cartographic research with GeoAI: GeoAI-enabled active cartographic symbolism, human-in-the-loop GeoAI for cartography, GeoAI-based mapping-as-a-service, and generative GeoAI for cartography.

相關內容

We present an analysis of total-variation (TV) on non-Euclidean parameterized surfaces, a natural representation of the shapes used in 3D graphics. Our work explains recent experimental findings in shape spectral TV [Fumero et al., 2020] and adaptive anisotropic spectral TV [Biton and Gilboa, 2022]. A new way to generalize set convexity from the plane to surfaces is derived by characterizing the TV eigenfunctions on surfaces. Relationships between TV, area, eigenvalue, eigenfunctions and their discontinuities are discovered. Further, we expand the shape spectral TV toolkit to include versatile zero-homogeneous flows demonstrated through smoothing and exaggerating filters. Last but not least, we propose the first TV-based method for shape deformation, characterized by deformations along geometrical bottlenecks. We show these bottlenecks to be aligned with eigenfunction discontinuities. This research advances the field of spectral TV on surfaces and its application in 3D graphics, offering new perspectives for shape filtering and deformation.

Large language models (LLMs), such as ChatGPT, have received substantial attention due to their capabilities for understanding and generating human language. LLMs in medicine to assist physicians for patient care are emerging as a promising research direction in both artificial intelligence and clinical medicine. This review provides a comprehensive overview of the principles, applications, and challenges faced by LLMs in medicine. We address the following specific questions: 1) How should medical LLMs be built? 2) What are the measures for the downstream performance of medical LLMs? 3) How should medical LLMs be utilized in real-world clinical practice? 4) What challenges arise from the use of medical LLMs? and 5) How should we better construct and utilize medical LLMs? This review aims to provide insights into the opportunities and challenges of LLMs in medicine, and serve as a practical resource for constructing effective medical LLMs. We also maintain and regularly updated list of practical guides on medical LLMs at //github.com/AI-in-Health/MedLLMsPracticalGuide.

Combining the strengths of many existing predictors to obtain a Mixture of Experts which is superior to its individual components is an effective way to improve the performance without having to develop new architectures or train a model from scratch. However, surprisingly, we find that na\"ively combining expert object detectors in a similar way to Deep Ensembles, can often lead to degraded performance. We identify that the primary cause of this issue is that the predictions of the experts do not match their performance, a term referred to as miscalibration. Consequently, the most confident detector dominates the final predictions, preventing the mixture from leveraging all the predictions from the experts appropriately. To address this, when constructing the Mixture of Experts, we propose to combine their predictions in a manner which reflects the individual performance of the experts; an objective we achieve by first calibrating the predictions before filtering and refining them. We term this approach the Mixture of Calibrated Experts and demonstrate its effectiveness through extensive experiments on 5 different detection tasks using a variety of detectors, showing that it: (i) improves object detectors on COCO and instance segmentation methods on LVIS by up to $\sim 2.5$ AP; (ii) reaches state-of-the-art on COCO test-dev with $65.1$ AP and on DOTA with $82.62$ $\mathrm{AP_{50}}$; (iii) outperforms single models consistently on recent detection tasks such as Open Vocabulary Object Detection.

User expectations impact the evaluation of new interactive systems. Elevated expectations may enhance the perceived effectiveness of interfaces in user studies, similar to a placebo effect observed in medical studies. To showcase the placebo effect, we executed a user study with 18 participants who conducted a reaction time test with two different computer screen refresh rates. Participants saw a stated screen refresh rate before every condition, which corresponded to the true refresh rate only in half of the conditions and was lower or higher in the other half. Results revealed successful priming, as participants believed in superior or inferior performance based on the narrative despite using the opposite refresh rate. Post-experiment questionnaires confirmed participants still held onto the initial narrative. Interestingly, the objective performance remained unchanged between both refresh rates. We discuss how study narratives can influence subjective measures and suggest strategies to mitigate placebo effects in user-centered study designs.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent AI agents since the mid-20th century. However, these efforts have mainly focused on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a sufficiently general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile and remarkable capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many research efforts have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for AI agents. Building upon this, we present a conceptual framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored to suit different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge when they form societies, and the insights they offer for human society. Finally, we discuss a range of key topics and open problems within the field.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司