亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In-context learning, a capability that enables a model to learn from input examples on the fly without necessitating weight updates, is a defining characteristic of large language models. In this work, we follow the setting proposed in (Garg et al., 2022) to better understand the generality and limitations of in-context learning from the lens of the simple yet fundamental task of linear regression. The key question we aim to address is: Are transformers more adept than some natural and simpler architectures at performing in-context learning under varying distribution shifts? To compare transformers, we propose to use a simple architecture based on set-based Multi-Layer Perceptrons (MLPs). We find that both transformers and set-based MLPs exhibit in-context learning under in-distribution evaluations, but transformers more closely emulate the performance of ordinary least squares (OLS). Transformers also display better resilience to mild distribution shifts, where set-based MLPs falter. However, under severe distribution shifts, both models' in-context learning abilities diminish.

相關內容

Bayesian policy reuse (BPR) is a general policy transfer framework for selecting a source policy from an offline library by inferring the task belief based on some observation signals and a trained observation model. In this paper, we propose an improved BPR method to achieve more efficient policy transfer in deep reinforcement learning (DRL). First, most BPR algorithms use the episodic return as the observation signal that contains limited information and cannot be obtained until the end of an episode. Instead, we employ the state transition sample, which is informative and instantaneous, as the observation signal for faster and more accurate task inference. Second, BPR algorithms usually require numerous samples to estimate the probability distribution of the tabular-based observation model, which may be expensive and even infeasible to learn and maintain, especially when using the state transition sample as the signal. Hence, we propose a scalable observation model based on fitting state transition functions of source tasks from only a small number of samples, which can generalize to any signals observed in the target task. Moreover, we extend the offline-mode BPR to the continual learning setting by expanding the scalable observation model in a plug-and-play fashion, which can avoid negative transfer when faced with new unknown tasks. Experimental results show that our method can consistently facilitate faster and more efficient policy transfer.

Insights are often considered the ideal outcome of visual analysis sessions. However, there is no single definition of what an insight is. Some scholars define insights as correlations, while others define them as hypotheses or aha moments. This lack of a clear definition can make it difficult to build visualization tools that effectively support insight discovery. In this paper, we contribute a comprehensive literature review that maps the landscape of existing insight definitions. We summarize key themes regarding how insight is defined, with the goal of helping readers identify which definitions of insight align closely with their research and tool development goals. Based on our review, we also suggest interesting research directions, such as synthesizing a unified formalism for insight and connecting theories of insight to other critical concepts in visualization research.

Obtaining rigorous statistical guarantees for generalization under distribution shift remains an open and active research area. We study a setting we call combinatorial distribution shift, where (a) under the test- and training-distributions, the labels $z$ are determined by pairs of features $(x,y)$, (b) the training distribution has coverage of certain marginal distributions over $x$ and $y$ separately, but (c) the test distribution involves examples from a product distribution over $(x,y)$ that is {not} covered by the training distribution. Focusing on the special case where the labels are given by bilinear embeddings into a Hilbert space $H$: $\mathbb{E}[z \mid x,y ]=\langle f_{\star}(x),g_{\star}(y)\rangle_{{H}}$, we aim to extrapolate to a test distribution domain that is $not$ covered in training, i.e., achieving bilinear combinatorial extrapolation. Our setting generalizes a special case of matrix completion from missing-not-at-random data, for which all existing results require the ground-truth matrices to be either exactly low-rank, or to exhibit very sharp spectral cutoffs. In this work, we develop a series of theoretical results that enable bilinear combinatorial extrapolation under gradual spectral decay as observed in typical high-dimensional data, including novel algorithms, generalization guarantees, and linear-algebraic results. A key tool is a novel perturbation bound for the rank-$k$ singular value decomposition approximations between two matrices that depends on the relative spectral gap rather than the absolute spectral gap, a result that may be of broader independent interest.

In this paper, we investigate the uplink signal detection approaches in the cell-free massive MIMO systems with unmanned aerial vehicles (UAVs) serving as aerial access points (APs). The ground users are equipped with multiple antennas and the ground-to-air propagation channels are subject to correlated Rician fading. To overcome huge signaling overhead in the fully-centralized detection, we propose a two-layer distributed uplink detection scheme, where the uplink signals are first detected in the AP-UAVs by using the minimum mean-squared error (MMSE) detector depending on local channel state information (CSI), and then collected and weighted combined at the CPU-UAV to obtain the refined detection. By using the operator-valued free probability theory, the asymptotic expressions of the combining weights are obtained, which only depend on the statistical CSI and show excellent accuracy. Based on the proposed distributed scheme, we further investigate the impacts of different distributed deployments on the achieved spectral efficiency (SE). Numerical results show that in urban and dense urban environments, it is more beneficial to deploy more AP-UAVs to achieve higher SE. On the other hand, in suburban environment, an optimal ratio between the number of deployed UAVs and the number of antennas per UAV exists to maximize the SE.

We study a fundamental problem in optimization under uncertainty. There are $n$ boxes; each box $i$ contains a hidden reward $x_i$. Rewards are drawn i.i.d. from an unknown distribution $\mathcal{D}$. For each box $i$, we see $y_i$, an unbiased estimate of its reward, which is drawn from a Normal distribution with known standard deviation $\sigma_i$ (and an unknown mean $x_i$). Our task is to select a single box, with the goal of maximizing our reward. This problem captures a wide range of applications, e.g. ad auctions, where the hidden reward is the click-through rate of an ad. Previous work in this model [BKMR12] proves that the naive policy, which selects the box with the largest estimate $y_i$, is suboptimal, and suggests a linear policy, which selects the box $i$ with the largest $y_i - c \cdot \sigma_i$, for some $c > 0$. However, no formal guarantees are given about the performance of either policy (e.g., whether their expected reward is within some factor of the optimal policy's reward). In this work, we prove that both the naive policy and the linear policy are arbitrarily bad compared to the optimal policy, even when $\mathcal{D}$ is well-behaved, e.g. has monotone hazard rate (MHR), and even under a "small tail" condition, which requires that not too many boxes have arbitrarily large noise. On the flip side, we propose a simple threshold policy that gives a constant approximation to the reward of a prophet (who knows the realized values $x_1, \dots, x_n$) under the same "small tail" condition. We prove that when this condition is not satisfied, even an optimal clairvoyant policy (that knows $\mathcal{D}$) cannot get a constant approximation to the prophet, even for MHR distributions, implying that our threshold policy is optimal against the prophet benchmark, up to constants.

Dynamic attention mechanism and global modeling ability make Transformer show strong feature learning ability. In recent years, Transformer has become comparable to CNNs methods in computer vision. This review mainly investigates the current research progress of Transformer in image and video applications, which makes a comprehensive overview of Transformer in visual learning understanding. First, the attention mechanism is reviewed, which plays an essential part in Transformer. And then, the visual Transformer model and the principle of each module are introduced. Thirdly, the existing Transformer-based models are investigated, and their performance is compared in visual learning understanding applications. Three image tasks and two video tasks of computer vision are investigated. The former mainly includes image classification, object detection, and image segmentation. The latter contains object tracking and video classification. It is significant for comparing different models' performance in various tasks on several public benchmark data sets. Finally, ten general problems are summarized, and the developing prospects of the visual Transformer are given in this review.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

北京阿比特科技有限公司