亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding movies and their structural patterns is a crucial task in decoding the craft of video editing. While previous works have developed tools for general analysis, such as detecting characters or recognizing cinematography properties at the shot level, less effort has been devoted to understanding the most basic video edit, the Cut. This paper introduces the Cut type recognition task, which requires modeling multi-modal information. To ignite research in this new task, we construct a large-scale dataset called MovieCuts, which contains 173,967 video clips labeled with ten cut types defined by professionals in the movie industry. We benchmark a set of audio-visual approaches, including some dealing with the problem's multi-modal nature. Our best model achieves 47.7% mAP, which suggests that the task is challenging and that attaining highly accurate Cut type recognition is an open research problem. Advances in automatic Cut-type recognition can unleash new experiences in the video editing industry, such as movie analysis for education, video re-editing, virtual cinematography, machine-assisted trailer generation, machine-assisted video editing, among others. Our data and code are publicly available: //github.com/PardoAlejo/MovieCuts}{//github.com/PardoAlejo/MovieCuts.

相關內容

Human activity recognition (HAR) using drone-mounted cameras has attracted considerable interest from the computer vision research community in recent years. A robust and efficient HAR system has a pivotal role in fields like video surveillance, crowd behavior analysis, sports analysis, and human-computer interaction. What makes it challenging are the complex poses, understanding different viewpoints, and the environmental scenarios where the action is taking place. To address such complexities, in this paper, we propose a novel Sparse Weighted Temporal Attention (SWTA) module to utilize sparsely sampled video frames for obtaining global weighted temporal attention. The proposed SWTA is comprised of two parts. First, temporal segment network that sparsely samples a given set of frames. Second, weighted temporal attention, which incorporates a fusion of attention maps derived from optical flow, with raw RGB images. This is followed by a basenet network, which comprises a convolutional neural network (CNN) module along with fully connected layers that provide us with activity recognition. The SWTA network can be used as a plug-in module to the existing deep CNN architectures, for optimizing them to learn temporal information by eliminating the need for a separate temporal stream. It has been evaluated on three publicly available benchmark datasets, namely Okutama, MOD20, and Drone-Action. The proposed model has received an accuracy of 72.76%, 92.56%, and 78.86% on the respective datasets thereby surpassing the previous state-of-the-art performances by a margin of 25.26%, 18.56%, and 2.94%, respectively.

Automatic analysis of teacher and student interactions could be very important to improve the quality of teaching and student engagement. However, despite some recent progress in utilizing multimodal data for teaching and learning analytics, a thorough analysis of a rich multimodal dataset coming for a complex real learning environment has yet to be done. To bridge this gap, we present a large-scale MUlti-modal Teaching and Learning Analytics (MUTLA) dataset. This dataset includes time-synchronized multimodal data records of students (learning logs, videos, EEG brainwaves) as they work in various subjects from Squirrel AI Learning System (SAIL) to solve problems of varying difficulty levels. The dataset resources include user records from the learner records store of SAIL, brainwave data collected by EEG headset devices, and video data captured by web cameras while students worked in the SAIL products. Our hope is that by analyzing real-world student learning activities, facial expressions, and brainwave patterns, researchers can better predict engagement, which can then be used to improve adaptive learning selection and student learning outcomes. An additional goal is to provide a dataset gathered from real-world educational activities versus those from controlled lab environments to benefit the educational learning community.

Effective analysis of unusual domain specific video collections represents an important practical problem, where state-of-the-art general purpose models still face limitations. Hence, it is desirable to design benchmark datasets that challenge novel powerful models for specific domains with additional constraints. It is important to remember that domain specific data may be noisier (e.g., endoscopic or underwater videos) and often require more experienced users for effective search. In this paper, we focus on single-shot videos taken from moving cameras in underwater environments, which constitute a nontrivial challenge for research purposes. The first shard of a new Marine Video Kit dataset is presented to serve for video retrieval and other computer vision challenges. Our dataset is used in a special session during Video Browser Showdown 2023. In addition to basic meta-data statistics, we present several insights based on low-level features as well as semantic annotations of selected keyframes. The analysis also contains experiments showing limitations of respected general purpose models for retrieval. Our dataset and code are publicly available at //hkust-vgd.github.io/marinevideokit.

Gender-inclusive language is important for achieving gender equality in languages with gender inflections, such as German. While stirring some controversy, it is increasingly adopted by companies and political institutions. A handful of tools have been developed to help people use gender-inclusive language by identifying instances of the generic masculine and providing suggestions for more inclusive reformulations. In this report, we define the underlying tasks in terms of natural language processing, and present a dataset and measures for benchmarking them. We also present a model that implements these tasks, by combining an inclusive language database with an elaborate sequence of processing steps via standard pre-trained models. Our model achieves a recall of 0.89 and a precision of 0.82 in our benchmark for identifying exclusive language; and one of its top five suggestions is chosen in real-world texts in 44% of cases. We sketch how the area could be further advanced by training end-to-end models and using large language models; and we urge the community to include more gender-inclusive texts in their training data in order to not present an obstacle to the adoption of gender-inclusive language. Through these efforts, we hope to contribute to restoring justice in language and, to a small extent, in reality.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

Transformer is a type of deep neural network mainly based on self-attention mechanism which is originally applied in natural language processing field. Inspired by the strong representation ability of transformer, researchers propose to extend transformer for computer vision tasks. Transformer-based models show competitive and even better performance on various visual benchmarks compared to other network types such as convolutional networks and recurrent networks. In this paper we provide a literature review of these visual transformer models by categorizing them in different tasks and analyze the advantages and disadvantages of these methods. In particular, the main categories include the basic image classification, high-level vision, low-level vision and video processing. Self-attention in computer vision is also briefly revisited as self-attention is the base component in transformer. Efficient transformer methods are included for pushing transformer into real applications. Finally, we give a discussion about the further research directions for visual transformer.

Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread of pre-training models for NLP applications, they almost focused on text-level manipulation, while neglecting the layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model the interaction between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage the image features to incorporate the visual information of words into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at //github.com/microsoft/unilm/tree/master/layoutlm.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

北京阿比特科技有限公司