亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate existence, uniqueness and approximation of solutions to stochastic delay differential equations (SDDEs) under Carath\'eodory-type drift coefficients. Moreover, we also assume that both drift $f=f(t,x,z)$ and diffusion $g=g(t,x,z)$ coefficient are Lipschitz continuous with respect to the space variable $x$, but only H\"older continuous with respect to the delay variable $z$. We provide a construction of randomized Euler scheme for approximation of solutions of Carath\'eodory SDDEs, and investigate its upper error bound. Finally, we report results of numerical experiments that confirm our theoretical findings.

相關內容

Blow-up solutions to a heat equation with spatial periodicity and a quadratic nonlinearity are studied through asymptotic analyses and a variety of numerical methods. The focus is on the dynamics of the singularities in the complexified space domain. Blow up in finite time is caused by these singularities eventually reaching the real axis. The analysis provides a distinction between small and large nonlinear effects, as well as insight into the various time scales on which blow up is approached. It is shown that an ordinary differential equation with quadratic nonlinearity plays a central role in the asymptotic analysis. This equation is studied in detail, including its numerical computation on multiple Riemann sheets, and the far-field solutions are shown to be given at leading order by a Weierstrass elliptic function.

The use of Air traffic management (ATM) simulators for planing and operations can be challenging due to their modelling complexity. This paper presents XALM (eXplainable Active Learning Metamodel), a three-step framework integrating active learning and SHAP (SHapley Additive exPlanations) values into simulation metamodels for supporting ATM decision-making. XALM efficiently uncovers hidden relationships among input and output variables in ATM simulators, those usually of interest in policy analysis. Our experiments show XALM's predictive performance comparable to the XGBoost metamodel with fewer simulations. Additionally, XALM exhibits superior explanatory capabilities compared to non-active learning metamodels. Using the `Mercury' (flight and passenger) ATM simulator, XALM is applied to a real-world scenario in Paris Charles de Gaulle airport, extending an arrival manager's range and scope by analysing six variables. This case study illustrates XALM's effectiveness in enhancing simulation interpretability and understanding variable interactions. By addressing computational challenges and improving explainability, XALM complements traditional simulation-based analyses. Lastly, we discuss two practical approaches for reducing the computational burden of the metamodelling further: we introduce a stopping criterion for active learning based on the inherent uncertainty of the metamodel, and we show how the simulations used for the metamodel can be reused across key performance indicators, thus decreasing the overall number of simulations needed.

A slow decaying Kolmogorov n-width of the solution manifold of a parametric partial differential equation precludes the realization of efficient linear projection-based reduced-order models. This is due to the high dimensionality of the reduced space needed to approximate with sufficient accuracy the solution manifold. To solve this problem, neural networks, in the form of different architectures, have been employed to build accurate nonlinear regressions of the solution manifolds. However, the majority of the implementations are non-intrusive black-box surrogate models, and only a part of them perform dimension reduction from the number of degrees of freedom of the discretized parametric models to a latent dimension. We present a new intrusive and explicable methodology for reduced-order modelling that employs neural networks for solution manifold approximation but that does not discard the physical and numerical models underneath in the predictive/online stage. We will focus on autoencoders used to compress further the dimensionality of linear approximants of solution manifolds, achieving in the end a nonlinear dimension reduction. After having obtained an accurate nonlinear approximant, we seek for the solutions on the latent manifold with the residual-based nonlinear least-squares Petrov-Galerkin method, opportunely hyper-reduced in order to be independent from the number of degrees of freedom. New adaptive hyper-reduction strategies are developed along with the employment of local nonlinear approximants. We test our methodology on two nonlinear time-dependent parametric benchmarks involving a supersonic flow past a NACA airfoil with changing Mach number and an incompressible turbulent flow around the Ahmed body with changing slant angle.

We introduce a new numerical method for solving time-harmonic Maxwell's equations via the modified weak Galerkin technique. The inter-element functions of the weak Galerkin finite elements are replaced by the average of the two discontinuous polynomial functions on the two sides of the polygon, in the modified weak Galerkin (MWG) finite element method. With the dependent inter-element functions, the weak curl and the weak gradient are defined directly on totally discontinuous polynomials. Optimal-order convergence of the method is proved. Numerical examples confirm the theory and show effectiveness of the modified weak Galerkin method over the existing methods.

Penalized $M-$estimators for logistic regression models have been previously study for fixed dimension in order to obtain sparse statistical models and automatic variable selection. In this paper, we derive asymptotic results for penalized $M-$estimators when the dimension $p$ grows to infinity with the sample size $n$. Specifically, we obtain consistency and rates of convergence results, for some choices of the penalty function. Moreover, we prove that these estimators consistently select variables with probability tending to 1 and derive their asymptotic distribution.

This paper considers the regularization continuation method and the trust-region updating strategy for the nonlinearly equality-constrained optimization problem. Namely, it uses the inverse of the regularization quasi-Newton matrix as the pre-conditioner to improve its computational efficiency in the well-posed phase, and it adopts the inverse of the regularization two-sided projection of the Hessian as the pre-conditioner to improve its robustness in the ill-conditioned phase. Since it only solves a linear system of equations at every iteration and the sequential quadratic programming (SQP) needs to solve a quadratic programming subproblem at every iteration, it is faster than SQP. Numerical results also show that it is more robust and faster than SQP (the built-in subroutine fmincon.m of the MATLAB2020a environment and the subroutine SNOPT executed in GAMS v28.2 (2019) environment). The computational time of the new method is about one third of that of fmincon.m for the large-scale problem. Finally, the global convergence analysis of the new method is also given.

This work focuses on solving super-linear stochastic differential equations (SDEs) involving different time scales numerically. Taking advantages of being explicit and easily implementable, a multiscale truncated Euler-Maruyama scheme is proposed for slow-fast SDEs with local Lipschitz coefficients. By virtue of the averaging principle, the strong convergence of its numerical solutions to the exact ones in pth moment is obtained. Furthermore, under mild conditions on the coefficients, the corresponding strong error estimate is also provided. Finally, two examples and some numerical simulations are given to verify the theoretical results.

This paper focuses on investigating the learning operators for identifying weak solutions to the Navier-Stokes equations. Our objective is to establish a connection between the initial data as input and the weak solution as output. To achieve this, we employ a combination of deep learning methods and compactness argument to derive learning operators for weak solutions for any large initial data in 2D, and for low-dimensional initial data in 3D. Additionally, we utilize the universal approximation theorem to derive a lower bound on the number of sensors required to achieve accurate identification of weak solutions to the Navier-Stokes equations. Our results demonstrate the potential of using deep learning techniques to address challenges in the study of fluid mechanics, particularly in identifying weak solutions to the Navier-Stokes equations.

We investigate error of the Euler scheme in the case when the right-hand side function of the underlying ODE satisfies nonstandard assumptions such as local one-sided Lipschitz condition and local H\"older continuity. Moreover, we assume two cases in regards to information availability: exact and noisy with respect to the right-hand side function. Optimality analysis of the Euler scheme is also provided. Finally, we present the results of some numerical experiments.

We develop new matching estimators for estimating causal quantile exposure-response functions and quantile exposure effects with continuous treatments. We provide identification results for the parameters of interest and establish the asymptotic properties of the derived estimators. We introduce a two-step estimation procedure. In the first step, we construct a matched data set via generalized propensity score matching, adjusting for measured confounding. In the second step, we fit a kernel quantile regression to the matched set. We also derive a consistent estimator of the variance of the matching estimators. Using simulation studies, we compare the introduced approach with existing alternatives in various settings. We apply the proposed method to Medicare claims data for the period 2012-2014, and we estimate the causal effect of exposure to PM$_{2.5}$ on the length of hospital stay for each zip code of the contiguous United States.

北京阿比特科技有限公司