亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate error of the Euler scheme in the case when the right-hand side function of the underlying ODE satisfies nonstandard assumptions such as local one-sided Lipschitz condition and local H\"older continuity. Moreover, we assume two cases in regards to information availability: exact and noisy with respect to the right-hand side function. Optimality analysis of the Euler scheme is also provided. Finally, we present the results of some numerical experiments.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 估計/估計量 · 縮放 · INTERACT · 奇異值 ·
2023 年 9 月 22 日

This paper studies the extreme singular values of non-harmonic Fourier matrices. Such a matrix of size $m\times s$ can be written as $\Phi=[ e^{-2\pi i j x_k}]_{j=0,1,\dots,m-1, k=1,2,\dots,s}$ for some set $\mathcal{X}=\{x_k\}_{k=1}^s$. The main results provide explicit lower bounds for the smallest singular value of $\Phi$ under the assumption $m\geq 6s$ and without any restrictions on $\mathcal{X}$. They show that for an appropriate scale $\tau$ determined by a density criteria, interactions between elements in $\mathcal{X}$ at scales smaller than $\tau$ are most significant and depends on the multiscale structure of $\mathcal{X}$ at fine scales, while distances larger than $\tau$ are less important and only depend on the local sparsity of the far away points. Theoretical and numerical comparisons show that the main results significantly improve upon classical bounds and achieve the same rate that was previously discovered for more restrictive settings.

We present here a new splitting method to solve Lyapunov equations in a Kronecker product form. Although this resulting matrix is of order $n^2$, each iteration demands two operations with the matrix $A$: a multiplication of the form $(A-\sigma I) \tilde{B}$ and a inversion of the form $(A-\sigma I)^{-1}\tilde{B}$. We see that for some choice of a parameter the iteration matrix is such that all their eigenvalues are in absolute value less than 1. Moreover we present a theorem that enables us to get a good starting vector for the method.

We consider a one-dimensional singularly perturbed 4th order problem with the additional feature of a shift term. An expansion into a smooth term, boundary layers and an inner layer yields a formal solution decomposition, and together with a stability result we have estimates for the subsequent numerical analysis. With classical layer adapted meshes we present a numerical method, that achieves supercloseness and optimal convergence orders in the associated energy norm. We also consider coarser meshes in view of the weak layers. Some numerical examples conclude the paper and support the theory.

We present a novel stabilized isogeometric formulation for the Stokes problem, where the geometry of interest is obtained via overlapping NURBS (non-uniform rational B-spline) patches, i.e., one patch on top of another in an arbitrary but predefined hierarchical order. All the visible regions constitute the computational domain, whereas independent patches are coupled through visible interfaces using Nitsche's formulation. Such a geometric representation inevitably involves trimming, which may yield trimmed elements of extremely small measures (referred to as bad elements) and thus lead to the instability issue. Motivated by the minimal stabilization method that rigorously guarantees stability for trimmed geometries [1], in this work we generalize it to the Stokes problem on overlapping patches. Central to our method is the distinct treatments for the pressure and velocity spaces: Stabilization for velocity is carried out for the flux terms on interfaces, whereas pressure is stabilized in all the bad elements. We provide a priori error estimates with a comprehensive theoretical study. Through a suite of numerical tests, we first show that optimal convergence rates are achieved, which consistently agrees with our theoretical findings. Second, we show that the accuracy of pressure is significantly improved by several orders using the proposed stabilization method, compared to the results without stabilization. Finally, we also demonstrate the flexibility and efficiency of the proposed method in capturing local features in the solution field.

We give a short survey of recent results on sparse-grid linear algorithms of approximate recovery and integration of functions possessing a unweighted or weighted Sobolev mixed smoothness based on their sampled values at a certain finite set. Some of them are extended to more general cases.

Neuromorphic computing is one of the few current approaches that have the potential to significantly reduce power consumption in Machine Learning and Artificial Intelligence. Imam & Cleland presented an odour-learning algorithm that runs on a neuromorphic architecture and is inspired by circuits described in the mammalian olfactory bulb. They assess the algorithm's performance in "rapid online learning and identification" of gaseous odorants and odorless gases (short "gases") using a set of gas sensor recordings of different odour presentations and corrupting them by impulse noise. We replicated parts of the study and discovered limitations that affect some of the conclusions drawn. First, the dataset used suffers from sensor drift and a non-randomised measurement protocol, rendering it of limited use for odour identification benchmarks. Second, we found that the model is restricted in its ability to generalise over repeated presentations of the same gas. We demonstrate that the task the study refers to can be solved with a simple hash table approach, matching or exceeding the reported results in accuracy and runtime. Therefore, a validation of the model that goes beyond restoring a learned data sample remains to be shown, in particular its suitability to odour identification tasks.

We make two contributions to the Isolation Forest method for anomaly and outlier detection. The first contribution is an information-theoretically motivated generalisation of the score function that is used to aggregate the scores across random tree estimators. This generalisation allows one to take into account not just the ensemble average across trees but instead the whole distribution. The second contribution is an alternative scoring function at the level of the individual tree estimator, in which we replace the depth-based scoring of the Isolation Forest with one based on hyper-volumes associated to an isolation tree's leaf nodes. We motivate the use of both of these methods on generated data and also evaluate them on 34 datasets from the recent and exhaustive ``ADBench'' benchmark, finding significant improvement over the standard isolation forest for both variants on some datasets and improvement on average across all datasets for one of the two variants. The code to reproduce our results is made available as part of the submission.

Ordinary state-based peridynamic (OSB-PD) models have an unparalleled capability to simulate crack propagation phenomena in solids with arbitrary Poisson's ratio. However, their non-locality also leads to prohibitively high computational cost. In this paper, a fast solution scheme for OSB-PD models based on matrix operation is introduced, with which, the graphics processing units (GPUs) are used to accelerate the computation. For the purpose of comparison and verification, a commonly used solution scheme based on loop operation is also presented. An in-house software is developed in MATLAB. Firstly, the vibration of a cantilever beam is solved for validating the loop- and matrix-based schemes by comparing the numerical solutions to those produced by a FEM software. Subsequently, two typical dynamic crack propagation problems are simulated to illustrate the effectiveness of the proposed schemes in solving dynamic fracture problems. Finally, the simulation of the Brokenshire torsion experiment is carried out by using the matrix-based scheme, and the similarity in the shapes of the experimental and numerical broken specimens further demonstrates the ability of the proposed approach to deal with 3D non-planar fracture problems. In addition, the speed-up of the matrix-based scheme with respect to the loop-based scheme and the performance of the GPU acceleration are investigated. The results emphasize the high computational efficiency of the matrix-based implementation scheme.

The study further explores randomized QMC (RQMC), which maintains the QMC convergence rate and facilitates computational efficiency analysis. Emphasis is laid on integrating randomly shifted lattice rules, a distinct RQMC quadrature, with IS,a classic variance reduction technique. The study underscores the intricacies of establishing a theoretical convergence rate for IS in QMC compared to MC, given the influence of problem dimensions and smoothness on QMC. The research also touches on the significance of IS density selection and its potential implications. The study culminates in examining the error bound of IS with a randomly shifted lattice rule, drawing inspiration from the reproducing kernel Hilbert space (RKHS). In the realm of finance and statistics, many problems boil down to computing expectations, predominantly integrals concerning a Gaussian measure. This study considers optimal drift importance sampling (ODIS) and Laplace importance sampling (LapIS) as common importance densities. Conclusively, the paper establishes that under certain conditions, the IS-randomly shifted lattice rule can achieve a near $O(N^{-1})$ error bound.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

北京阿比特科技有限公司