亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a fast algorithm for the resolution of the Lasso for convolutional models in high dimension, with a particular focus on the problem of spike sorting in neuroscience. Making use of biological properties related to neurons, we explain how the particular structure of the problem allows several optimizations, leading to an algorithm with a temporal complexity which grows linearly with respect to the size of the recorded signal and can be performed online. Moreover the spatial separability of the initial problem allows to break it into subproblems, further reducing the complexity and making possible its application on the latest recording devices which comprise a large number of sensors. We provide several mathematical results: the size and numerical complexity of the subproblems can be estimated mathematically by using percolation theory. We also show under reasonable assumptions that the Lasso estimator retrieves the true support with large probability. Finally the theoretical time complexity of the algorithm is given. Numerical simulations are also provided in order to illustrate the efficiency of our approach.

相關內容

The cost of both generalized least squares (GLS) and Gibbs sampling in a crossed random effects model can easily grow faster than $N^{3/2}$ for $N$ observations. Ghosh et al. (2020) develop a backfitting algorithm that reduces the cost to $O(N)$. Here we extend that method to a generalized linear mixed model for logistic regression. We use backfitting within an iteratively reweighted penalized least square algorithm. The specific approach is a version of penalized quasi-likelihood due to Schall (1991). A straightforward version of Schall's algorithm would also cost more than $N^{3/2}$ because it requires the trace of the inverse of a large matrix. We approximate that quantity at cost $O(N)$ and prove that this substitution makes an asymptotically negligible difference. Our backfitting algorithm also collapses the fixed effect with one random effect at a time in a way that is analogous to the collapsed Gibbs sampler of Papaspiliopoulos et al. (2020). We use a symmetric operator that facilitates efficient covariance computation. We illustrate our method on a real dataset from Stitch Fix. By properly accounting for crossed random effects we show that a naive logistic regression could underestimate sampling variances by several hundred fold.

Glivenko's theorem says that, in propositional logic, classical provability of a formula entails intuitionistic provability of double negation of that formula. We generalise Glivenko's theorem from double negation to an arbitrary nucleus, from provability in a calculus to an inductively generated abstract consequence relation, and from propositional logic to any set of objects whatsoever. The resulting conservation theorem comes with precise criteria for its validity, which allow us to instantly include G\"odel's counterpart for first-order predicate logic of Glivenko's theorem. The open nucleus gives us a form of the deduction theorem for positive logic, and the closed nucleus prompts a variant of the reduction from intuitionistic to minimal logic going back to Johansson.

We consider large-scale Markov decision processes with an unknown cost function and address the problem of learning a policy from a finite set of expert demonstrations. We assume that the learner is not allowed to interact with the expert and has no access to reinforcement signal of any kind. Existing inverse reinforcement learning methods come with strong theoretical guarantees, but are computationally expensive, while state-of-the-art policy optimization algorithms achieve significant empirical success, but are hampered by limited theoretical understanding. To bridge the gap between theory and practice, we introduce a novel bilinear saddle-point framework using Lagrangian duality. The proposed primal-dual viewpoint allows us to develop a model-free provably efficient algorithm through the lens of stochastic convex optimization. The method enjoys the advantages of simplicity of implementation, low memory requirements, and computational and sample complexities independent of the number of states. We further present an equivalent no-regret online-learning interpretation.

We consider the problem of static Bayesian inference for partially observed L\'{e}vy-process models. We develop a methodology which allows one to infer static parameters and some states of the process, without a bias from the time-discretization of the afore-mentioned L\'{e}vy process. The unbiased method is exceptionally amenable to parallel implementation and can be computationally efficient relative to competing approaches. We implement the method on S \& P 500 log-return daily data and compare it to some Markov chain Monte Carlo (MCMC) algorithm.

We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

Developing classification algorithms that are fair with respect to sensitive attributes of the data has become an important problem due to the growing deployment of classification algorithms in various social contexts. Several recent works have focused on fairness with respect to a specific metric, modeled the corresponding fair classification problem as a constrained optimization problem, and developed tailored algorithms to solve them. Despite this, there still remain important metrics for which we do not have fair classifiers and many of the aforementioned algorithms do not come with theoretical guarantees; perhaps because the resulting optimization problem is non-convex. The main contribution of this paper is a new meta-algorithm for classification that takes as input a large class of fairness constraints, with respect to multiple non-disjoint sensitive attributes, and which comes with provable guarantees. This is achieved by first developing a meta-algorithm for a large family of classification problems with convex constraints, and then showing that classification problems with general types of fairness constraints can be reduced to those in this family. We present empirical results that show that our algorithm can achieve near-perfect fairness with respect to various fairness metrics, and that the loss in accuracy due to the imposed fairness constraints is often small. Overall, this work unifies several prior works on fair classification, presents a practical algorithm with theoretical guarantees, and can handle fairness metrics that were previously not possible.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

We provide initial seedings to the Quick Shift clustering algorithm, which approximate the locally high-density regions of the data. Such seedings act as more stable and expressive cluster-cores than the singleton modes found by Quick Shift. We establish statistical consistency guarantees for this modification. We then show strong clustering performance on real datasets as well as promising applications to image segmentation.

In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters

北京阿比特科技有限公司