亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomness supports many critical functions in the field of machine learning (ML) including optimisation, data selection, privacy, and security. ML systems outsource the task of generating or harvesting randomness to the compiler, the cloud service provider or elsewhere in the toolchain. Yet there is a long history of attackers exploiting poor randomness, or even creating it -- as when the NSA put backdoors in random number generators to break cryptography. In this paper we consider whether attackers can compromise an ML system using only the randomness on which they commonly rely. We focus our effort on Randomised Smoothing, a popular approach to train certifiably robust models, and to certify specific input datapoints of an arbitrary model. We choose Randomised Smoothing since it is used for both security and safety -- to counteract adversarial examples and quantify uncertainty respectively. Under the hood, it relies on sampling Gaussian noise to explore the volume around a data point to certify that a model is not vulnerable to adversarial examples. We demonstrate an entirely novel attack, where an attacker backdoors the supplied randomness to falsely certify either an overestimate or an underestimate of robustness for up to 81 times. We demonstrate that such attacks are possible, that they require very small changes to randomness to succeed, and that they are hard to detect. As an example, we hide an attack in the random number generator and show that the randomness tests suggested by NIST fail to detect it. We advocate updating the NIST guidelines on random number testing to make them more appropriate for safety-critical and security-critical machine-learning applications.

相關內容

We present SIM-FSVGD for learning robot dynamics from data. As opposed to traditional methods, SIM-FSVGD leverages low-fidelity physical priors, e.g., in the form of simulators, to regularize the training of neural network models. While learning accurate dynamics already in the low data regime, SIM-FSVGD scales and excels also when more data is available. We empirically show that learning with implicit physical priors results in accurate mean model estimation as well as precise uncertainty quantification. We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system. Using model-based RL, we demonstrate a highly dynamic parking maneuver with drifting, using less than half the data compared to the state of the art.

Probabilistic world models increase data efficiency of model-based reinforcement learning (MBRL) by guiding the policy with their epistemic uncertainty to improve exploration and acquire new samples. Moreover, the uncertainty-aware learning procedures in probabilistic approaches lead to robust policies that are less sensitive to noisy observations compared to uncertainty unaware solutions. We propose to combine trajectory sampling and deep Gaussian covariance network (DGCN) for a data-efficient solution to MBRL problems in an optimal control setting. We compare trajectory sampling with density-based approximation for uncertainty propagation using three different probabilistic world models; Gaussian processes, Bayesian neural networks, and DGCNs. We provide empirical evidence using four different well-known test environments, that our method improves the sample-efficiency over other combinations of uncertainty propagation methods and probabilistic models. During our tests, we place particular emphasis on the robustness of the learned policies with respect to noisy initial states.

Heterogeneous Federated Learning (HtFL) enables collaborative learning on multiple clients with different model architectures while preserving privacy. Despite recent research progress, knowledge sharing in HtFL is still difficult due to data and model heterogeneity. To tackle this issue, we leverage the knowledge stored in pre-trained generators and propose a new upload-efficient knowledge transfer scheme called Federated Knowledge-Transfer Loop (FedKTL). Our FedKTL can produce client-task-related prototypical image-vector pairs via the generator's inference on the server. With these pairs, each client can transfer pre-existing knowledge from the generator to its local model through an additional supervised local task. We conduct extensive experiments on four datasets under two types of data heterogeneity with 14 kinds of models including CNNs and ViTs. Results show that our upload-efficient FedKTL surpasses seven state-of-the-art methods by up to 7.31% in accuracy. Moreover, our knowledge transfer scheme is applicable in scenarios with only one edge client. Code: //github.com/TsingZ0/FedKTL

In recent several years, the information bottleneck (IB) principle provides an information-theoretic framework for deep multi-view clustering (MVC) by compressing multi-view observations while preserving the relevant information of multiple views. Although existing IB-based deep MVC methods have achieved huge success, they rely on variational approximation and distribution assumption to estimate the lower bound of mutual information, which is a notoriously hard and impractical problem in high-dimensional multi-view spaces. In this work, we propose a new differentiable information bottleneck (DIB) method, which provides a deterministic and analytical MVC solution by fitting the mutual information without the necessity of variational approximation. Specifically, we first propose to directly fit the mutual information of high-dimensional spaces by leveraging normalized kernel Gram matrix, which does not require any auxiliary neural estimator to estimate the lower bound of mutual information. Then, based on the new mutual information measurement, a deterministic multi-view neural network with analytical gradients is explicitly trained to parameterize IB principle, which derives a deterministic compression of input variables from different views. Finally, a triplet consistency discovery mechanism is devised, which is capable of mining the feature consistency, cluster consistency and joint consistency based on the deterministic and compact representations. Extensive experimental results show the superiority of our DIB method on 6 benchmarks compared with 13 state-of-the-art baselines.

Recent advancements in large language models (LLMs) have highlighted the potential for vulnerability detection, a crucial component of software quality assurance. Despite this progress, most studies have been limited to the perspective of a single role, usually testers, lacking diverse viewpoints from different roles in a typical software development life-cycle, including both developers and testers. To this end, this paper introduces an approach to employ LLMs to act as different roles to simulate real-life code review process, engaging in discussions towards a consensus on the existence and classification of vulnerabilities in the code. Preliminary evaluation of the proposed approach indicates a 4.73% increase in the precision rate, 58.9% increase in the recall rate, and a 28.1% increase in the F1 score.

Existing technologies expand BERT from different perspectives, e.g. designing different pre-training tasks, different semantic granularities, and different model architectures. Few models consider expanding BERT from different text formats. In this paper, we propose a heterogeneous knowledge language model (\textbf{HKLM}), a unified pre-trained language model (PLM) for all forms of text, including unstructured text, semi-structured text, and well-structured text. To capture the corresponding relations among these multi-format knowledge, our approach uses masked language model objective to learn word knowledge, uses triple classification objective and title matching objective to learn entity knowledge and topic knowledge respectively. To obtain the aforementioned multi-format text, we construct a corpus in the tourism domain and conduct experiments on 5 tourism NLP datasets. The results show that our approach outperforms the pre-training of plain text using only 1/4 of the data. We further pre-train the domain-agnostic HKLM and achieve performance gains on the XNLI dataset.

Language, a prominent human ability to express through sequential symbols, has been computationally mastered by recent advances of large language models (LLMs). By predicting the next word recurrently with huge neural models, LLMs have shown unprecedented capabilities in understanding and reasoning. Circuit, as the "language" of electronic design, specifies the functionality of an electronic device by cascade connections of logic gates. Then, can circuits also be mastered by a a sufficiently large "circuit model", which can conquer electronic design tasks by simply predicting the next logic gate? In this work, we take the first step to explore such possibilities. Two primary barriers impede the straightforward application of LLMs to circuits: their complex, non-sequential structure, and the intolerance of hallucination due to strict constraints (e.g., equivalence). For the first barrier, we encode a circuit as a memory-less, depth-first traversal trajectory, which allows Transformer-based neural models to better leverage its structural information, and predict the next gate on the trajectory as a circuit model. For the second barrier, we introduce an equivalence-preserving decoding process, which ensures that every token in the generated trajectory adheres to the specified equivalence constraints. Moreover, the circuit model can also be regarded as a stochastic policy to tackle optimization-oriented circuit design tasks. Experimentally, we trained a Transformer-based model of 88M parameters, named "Circuit Transformer", which demonstrates impressive performance in end-to-end logic synthesis. With Monte-Carlo tree search, Circuit Transformer significantly improves over resyn2 while retaining strict equivalence, showcasing the potential of generative AI in conquering electronic design challenges.

Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.

Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司