Bayesian Image-on-Scalar Regression (ISR) offers significant advantages for neuroimaging data analysis, including flexibility and the ability to quantify uncertainty. However, its application to large-scale imaging datasets, such as found in the UK Biobank, is hindered by the computational demands of traditional posterior computation methods, as well as the challenge of individual-specific brain masks that deviate from the common mask typically used in standard ISR approaches. To address these challenges, we introduce a novel Bayesian ISR model that is scalable and accommodates inconsistent brain masks across subjects in large-scale imaging studies. Our model leverages Gaussian process priors and integrates salience area indicators to facilitate ISR. We develop a cutting-edge scalable posterior computation algorithm that employs stochastic gradient Langevin dynamics coupled with memory mapping techniques, ensuring that computation time scales linearly with subsample size and memory usage is constrained only by the batch size. Our approach uniquely enables direct spatial posterior inferences on brain activation regions. The efficacy of our method is demonstrated through simulations and analysis of the UK Biobank task fMRI data, encompassing 38,639 subjects and over 120,000 voxels per image, showing that it can achieve a speed increase of 4 to 11 times and enhance statistical power by 8% to 18% compared to traditional Gibbs sampling with zero-imputation in various simulation scenarios.
Benchmarking Quantum Process Units (QPU) at an application level usually requires considering the whole programming stack of the quantum computer. One critical task is the minor-embedding (resp. transpilation) step, which involves space-time overheads for annealing-based (resp. gate-based) quantum computers. This paper establishes a new protocol to generate graph instances with their associated near-optimal minor-embedding mappings to D-Wave Quantum Annealers (QA). This set of favorable mappings is used to generate a wide diversity of optimization problem instances. We use this method to benchmark QA on large instances of unconstrained and constrained optimization problems and compare the performance of the QPU with efficient classical solvers. The benchmark aims to evaluate and quantify the key characteristics of instances that could benefit from the use of a quantum computer. In this context, existing QA seem best suited for unconstrained problems on instances with densities less than $10\%$. For constrained problems, the penalty terms used to encode the hard constraints restrict the performance of QA and suggest that these QPU will be less efficient on these problems of comparable size.
Feature grid Scene Representation Networks (SRNs) have been applied to scientific data as compact functional surrogates for analysis and visualization. As SRNs are black-box lossy data representations, assessing the prediction quality is critical for scientific visualization applications to ensure that scientists can trust the information being visualized. Currently, existing architectures do not support inference time reconstruction quality assessment, as coordinate-level errors cannot be evaluated in the absence of ground truth data. We propose a parameter-efficient multi-decoder SRN (MDSRN) ensemble architecture consisting of a shared feature grid with multiple lightweight multi-layer perceptron decoders. MDSRN can generate a set of plausible predictions for a given input coordinate to compute the mean as the prediction of the multi-decoder ensemble and the variance as a confidence score. The coordinate-level variance can be rendered along with the data to inform the reconstruction quality, or be integrated into uncertainty-aware volume visualization algorithms. To prevent the misalignment between the quantified variance and the prediction quality, we propose a novel variance regularization loss for ensemble learning that promotes the Regularized multi-decoder SRN (RMDSRN) to obtain a more reliable variance that correlates closely to the true model error. We comprehensively evaluate the quality of variance quantification and data reconstruction of Monte Carlo Dropout, Mean Field Variational Inference, Deep Ensemble, and Predicting Variance compared to the proposed MDSRN and RMDSRN across diverse scalar field datasets. We demonstrate that RMDSRN attains the most accurate data reconstruction and competitive variance-error correlation among uncertain SRNs under the same neural network parameter budgets.
Artificial Intelligence (AI) significantly influences many fields, largely thanks to the vast amounts of high-quality data for machine learning models. The emphasis is now on a data-centric AI strategy, prioritizing data development over model design progress. Automating this process is crucial. In this paper, we serve as the first work to introduce the automatic data-centric development (AD^2) task and outline its core challenges, which require domain-experts-like task scheduling and implementation capability, largely unexplored by previous work. By leveraging the strong complex problem-solving capabilities of large language models (LLMs), we propose an LLM-based autonomous agent, equipped with a strategy named Collaborative Knowledge-STudying-Enhanced Evolution by Retrieval (Co-STEER), to simultaneously address all the challenges. Specifically, our proposed Co-STEER agent enriches its domain knowledge through our proposed evolving strategy and develops both its scheduling and implementation skills by accumulating and retrieving domain-specific practical experience. With an improved schedule, the capability for implementation accelerates. Simultaneously, as implementation feedback becomes more thorough, the scheduling accuracy increases. These two capabilities evolve together through practical feedback, enabling a collaborative evolution process. Extensive experimental results demonstrate that our Co-STEER agent breaks new ground in AD^2 research, possesses strong evolvable schedule and implementation ability, and demonstrates the significant effectiveness of its components. Our Co-STEER paves the way for AD^2 advancements.
Dysarthric speech recognition (DSR) presents a formidable challenge due to inherent inter-speaker variability, leading to severe performance degradation when applying DSR models to new dysarthric speakers. Traditional speaker adaptation methodologies typically involve fine-tuning models for each speaker, but this strategy is cost-prohibitive and inconvenient for disabled users, requiring substantial data collection. To address this issue, we introduce a prototype-based approach that markedly improves DSR performance for unseen dysarthric speakers without additional fine-tuning. Our method employs a feature extractor trained with HuBERT to produce per-word prototypes that encapsulate the characteristics of previously unseen speakers. These prototypes serve as the basis for classification. Additionally, we incorporate supervised contrastive learning to refine feature extraction. By enhancing representation quality, we further improve DSR performance, enabling effective personalized DSR. We release our code at //github.com/NKU-HLT/PB-DSR.
Despite recent advancements in Self-Supervised Learning (SSL) for time series analysis, a noticeable gap persists between the anticipated achievements and actual performance. While these methods have demonstrated formidable generalization capabilities with minimal labels in various domains, their effectiveness in distinguishing between different classes based on a limited number of annotated records is notably lacking. Our hypothesis attributes this bottleneck to the prevalent use of Contrastive Learning, a shared training objective in previous state-of-the-art (SOTA) methods. By mandating distinctiveness between representations for negative pairs drawn from separate records, this approach compels the model to encode unique record-based patterns but simultaneously neglects changes occurring across the entire record. To overcome this challenge, we introduce Distilled Embedding for Almost-Periodic Time Series (DEAPS) in this paper, offering a non-contrastive method tailored for quasiperiodic time series, such as electrocardiogram (ECG) data. By avoiding the use of negative pairs, we not only mitigate the model's blindness to temporal changes but also enable the integration of a "Gradual Loss (Lgra)" function. This function guides the model to effectively capture dynamic patterns evolving throughout the record. The outcomes are promising, as DEAPS demonstrates a notable improvement of +10% over existing SOTA methods when just a few annotated records are presented to fit a Machine Learning (ML) model based on the learned representation.
With the wide application of machine translation, the testing of Machine Translation Systems (MTSs) has attracted much attention. Recent works apply Metamorphic Testing (MT) to address the oracle problem in MTS testing. Existing MT methods for MTS generally follow the workflow of input transformation and output relation comparison, which generates a follow-up input sentence by mutating the source input and compares the source and follow-up output translations to detect translation errors, respectively. These methods use various input transformations to generate test case pairs and have successfully triggered numerous translation errors. However, they have limitations in performing fine-grained and rigorous output relation comparison and thus may report many false alarms and miss many true errors. In this paper, we propose a word closure-based output comparison method to address the limitations of the existing MTS MT methods. We first propose word closure as a new comparison unit, where each closure includes a group of correlated input and output words in the test case pair. Word closures suggest the linkages between the appropriate fragment in the source output translation and its counterpart in the follow-up output for comparison. Next, we compare the semantics on the level of word closure to identify the translation errors. In this way, we perform a fine-grained and rigorous semantic comparison for the outputs and thus realize more effective violation identification. We evaluate our method with the test cases generated by five existing input transformations and the translation outputs from three popular MTSs. Results show that our method significantly outperforms the existing works in violation identification by improving the precision and recall and achieving an average increase of 29.9% in F1 score. It also helps to increase the F1 score of translation error localization by 35.9%.
This paper introduces a new dual monocular visualinertial odometry (dual-VIO) strategy for a mobile manipulator operating under dynamic locomotion, i.e. coordinated movement involving both the base platform and the manipulator arm. Our approach has been motivated by challenges arising from inaccurate estimation due to coupled excitation when the mobile manipulator is engaged in dynamic locomotion in cluttered environments. The technique maintains two independent monocular VIO modules, with one at the mobile base and the other at the end-effector (EE), which are tightly coupled at the low level of the factor graph. The proposed method treats each monocular VIO with respect to each other as a positional anchor through arm-kinematics. These anchor points provide a soft geometric constraint during the VIO pose optimization. This allows us to stabilize both estimators in case of instability of one estimator in highly dynamic locomotions. The performance of our approach has been demonstrated through extensive experimental testing with a mobile manipulator tested in comparison to running dual VINS-Mono in parallel. We envision that our method can also provide a foundation towards active-SLAM (ASLAM) with a new perspective on multi-VIO fusion and system redundancy.
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.