We study the enumeration of answers to Unions of Conjunctive Queries (UCQs) with optimal time guarantees. More precisely, we wish to identify the queries that can be solved with linear preprocessing time and constant delay. Despite the basic nature of this problem, it was shown only recently that UCQs can be solved within these time bounds if they admit free-connex union extensions, even if all individual CQs in the union are intractable with respect to the same complexity measure. Our goal is to understand whether there exist additional tractable UCQs, not covered by the currently known algorithms. As a first step, we show that some previously unclassified UCQs are hard using the classic 3SUM hypothesis, via a known reduction from 3SUM to triangle listing in graphs. As a second step, we identify a question about a variant of this graph task which is unavoidable if we want to classify all self-join free UCQs: is it possible to decide the existence of a triangle in a vertex-unbalanced tripartite graph in linear time? We prove that this task is equivalent in hardness to some family of UCQs. Finally, we show a dichotomy for unions of two self-join-free CQs if we assume the answer to this question is negative. As a result, to reason about a class of enumeration problems defined by UCQs, it is enough to study the single decision problem of detecting triangles in unbalanced graphs. As of today, we know of no algorithm that comes close to solving this decision problem within the required time bounds. Our conclusion is that, without a breakthrough for triangle detection, we have no hope to find an efficient algorithm for additional unions of two self-join free CQs. On the other hand, if we will one day have such a triangle detection algorithm, we will immediately obtain an efficient algorithm for a family of UCQs that are currently not known to be tractable.
We present the first general construction of a Multi-Factor Key Derivation Function (MFKDF). Our function expands upon password-based key derivation functions (PBKDFs) with support for using other popular authentication factors like TOTP, HOTP, and hardware tokens in the key derivation process. In doing so, it provides an exponential security improvement over PBKDFs with less than 12 ms of additional computational overhead in a typical web browser. We further present a threshold MFKDF construction, allowing for client-side key recovery and reconstitution if a factor is lost. Finally, by "stacking" derived keys, we provide a means of cryptographically enforcing arbitrarily specific key derivation policies. The result is a paradigm shift toward direct cryptographic protection of user data using all available authentication factors, with no noticeable change to the user experience. We demonstrate the ability of our solution to not only significantly improve the security of existing systems implementing PBKDFs, but also to enable new applications where PBKDFs would not be considered a feasible approach.
Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.
Clustering with outliers is one of the most fundamental problems in Computer Science. Given a set $X$ of $n$ points and two integers $k$ and $m$, the clustering with outliers aims to exclude $m$ points from $X$ and partition the remaining points into $k$ clusters that minimizes a certain cost function. In this paper, we give a general approach for solving clustering with outliers, which results in a fixed-parameter tractable (FPT) algorithm in $k$ and $m$, that almost matches the approximation ratio for its outlier-free counterpart. As a corollary, we obtain FPT approximation algorithms with optimal approximation ratios for $k$-Median and $k$-Means with outliers in general metrics. We also exhibit more applications of our approach to other variants of the problem that impose additional constraints on the clustering, such as fairness or matroid constraints.
This article develops a new algorithm named TTRISK to solve high-dimensional risk-averse optimization problems governed by differential equations (ODEs and/or PDEs) under uncertainty. As an example, we focus on the so-called Conditional Value at Risk (CVaR), but the approach is equally applicable to other coherent risk measures. Both the full and reduced space formulations are considered. The algorithm is based on low rank tensor approximations of random fields discretized using stochastic collocation. To avoid non-smoothness of the objective function underpinning the CVaR, we propose an adaptive strategy to select the width parameter of the smoothed CVaR to balance the smoothing and tensor approximation errors. Moreover, unbiased Monte Carlo CVaR estimate can be computed by using the smoothed CVaR as a control variate. To accelerate the computations, we introduce an efficient preconditioner for the KKT system in the full space formulation.The numerical experiments demonstrate that the proposed method enables accurate CVaR optimization constrained by large-scale discretized systems. In particular, the first example consists of an elliptic PDE with random coefficients as constraints. The second example is motivated by a realistic application to devise a lockdown plan for United Kingdom under COVID-19. The results indicate that the risk-averse framework is feasible with the tensor approximations under tens of random variables.
Trustworthy AI is becoming ever more important in both machine learning and legal domains. One important consequence is that decision makers must seek to guarantee a 'fair', i.e., non-discriminatory, algorithmic decision procedure. However, there are several competing notions of algorithmic fairness that have been shown to be mutually incompatible under realistic factual assumptions. This concerns, for example, the widely used fairness measures of 'calibration within groups' and 'balance for the positive/negative class'. In this paper, we present a novel algorithm (FAir Interpolation Method: FAIM) for continuously interpolating between these three fairness criteria. Thus, an initially unfair prediction can be remedied to, at least partially, meet a desired, weighted combination of the respective fairness conditions. We demonstrate the effectiveness of our algorithm when applied to synthetic data, the COMPAS data set, and a new, real-world data set from the e-commerce sector. Finally, we discuss to what extent FAIM can be harnessed to comply with conflicting legal obligations. The analysis suggests that it may operationalize duties in traditional legal fields, such as credit scoring and criminal justice proceedings, but also for the latest AI regulations put forth in the EU, like the recently enacted Digital Markets Act.
Tests for structural breaks in time series should ideally be sensitive to breaks in the parameter of interest, while being robust to nuisance changes. Statistical analysis thus needs to allow for some form of nonstationarity under the null hypothesis of no change. In this paper, estimators for integrated parameters of locally stationary time series are constructed and a corresponding functional central limit theorem is established, enabling change-point inference for a broad class of parameters under mild assumptions. The proposed framework covers all parameters which may be expressed as nonlinear functions of moments, for example kurtosis, autocorrelation, and coefficients in a linear regression model. To perform feasible inference based on the derived limit distribution, a bootstrap variant is proposed and its consistency is established. The methodology is illustrated by means of a simulation study and by an application to high-frequency asset prices.
We consider estimation under model misspecification where there is a model mismatch between the underlying system, which generates the data, and the model used during estimation. We propose a model misspecification framework which enables a joint treatment of the model misspecification types of having fake features as well as incorrect covariance assumptions on the unknowns and the noise. We present a decomposition of the output error into components that relate to different subsets of the model parameters corresponding to underlying, fake and missing features. Here, fake features are features which are included in the model but are not present in the underlying system. Under this framework, we characterize the estimation performance and reveal trade-offs between the number of samples, number of fake features, and the possibly incorrect noise level assumption. In contrast to existing work focusing on incorrect covariance assumptions or missing features, fake features is a central component of our framework. Our results show that fake features can significantly improve the estimation performance, even though they are not correlated with the features in the underlying system. In particular, we show that the estimation error can be decreased by including more fake features in the model, even to the point where the model is overparametrized, i.e., the model contains more unknowns than observations.
There are existing standard solvers for tackling discrete optimization problems. However, in practice, it is uncommon to apply them directly to the large input space typical of this class of problems. Rather, the input is preprocessed to look for simplifications and to extract the core subset of the problem space, which is called the Kernel. This pre-processing procedure is known in the context of parameterized complexity theory as Kernelization. In this thesis, I implement parallel versions of some Kernelization algorithms and evaluate their performance. The performance of Kernelization algorithms is measured either by the size of the output Kernel or by the time it takes to compute the kernel. Sometimes the Kernel is the same as the original input, so it is desirable to know this, as soon as possible. The problem scope is limited to a particular type of discrete optimisation problem which is a version of the K-clique problem in which nodes of the given graph are pre-coloured legally using k colours. The final evaluation shows that my parallel implementations achieve over 50% improvement in efficiency for at least one of these algorithms. This is attained not just in terms of speed, but it is also able to produce a smaller kernel.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.