亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents the first dynamic predictive analysis for data store applications under weak isolation levels, called Isopredict. Given an observed serializable execution of a data store application, Isopredict generates and solves SMT constraints to find an unserializable execution that is a feasible execution of the application. Isopredict introduces novel techniques that handle divergent application behavior; solve mutually recursive sets of constraints; and balance coverage, precision, and performance. An evaluation on four transactional data store benchmarks shows that Isopredict often predicts unserializable behaviors, 99% of which are feasible.

相關內容

This paper presents an innovative application of Transformer-XL for long sequence tasks in robotic learning from demonstrations (LfD). The proposed framework effectively integrates multi-modal sensor inputs, including RGB-D images, LiDAR, and tactile sensors, to construct a comprehensive feature vector. By leveraging the advanced capabilities of Transformer-XL, particularly its attention mechanism and position encoding, our approach can handle the inherent complexities and long-term dependencies of multi-modal sensory data. The results of an extensive empirical evaluation demonstrate significant improvements in task success rates, accuracy, and computational efficiency compared to conventional methods such as Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs). The findings indicate that the Transformer-XL-based framework not only enhances the robot's perception and decision-making abilities but also provides a robust foundation for future advancements in robotic learning from demonstrations.

Deep generative models have shown tremendous capability in data density estimation and data generation from finite samples. While these models have shown impressive performance by learning correlations among features in the data, some fundamental shortcomings are their lack of explainability, tendency to induce spurious correlations, and poor out-of-distribution extrapolation. To remedy such challenges, recent work has proposed a shift toward causal generative models. Causal models offer several beneficial properties to deep generative models, such as distribution shift robustness, fairness, and interpretability. Structural causal models (SCMs) describe data-generating processes and model complex causal relationships and mechanisms among variables in a system. Thus, SCMs can naturally be combined with deep generative models. We provide a technical survey on causal generative modeling categorized into causal representation learning and controllable counterfactual generation methods. We focus on fundamental theory, methodology, drawbacks, datasets, and metrics. Then, we cover applications of causal generative models in fairness, privacy, out-of-distribution generalization, precision medicine, and biological sciences. Lastly, we discuss open problems and fruitful research directions for future work in the field.

This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for flexible and effective personal mobility generation. LLMs overcome the limitations of previous models by effectively processing semantic data and offering versatility in modeling various tasks. Our approach addresses three research questions: aligning LLMs with real-world urban mobility data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility. The key technical contribution is a novel LLM agent framework that accounts for individual activity patterns and motivations, including a self-consistency approach to align LLMs with real-world activity data and a retrieval-augmented strategy for interpretable activity generation. We evaluate our LLM agent framework and compare it with state-of-the-art personal mobility generation approaches, demonstrating the effectiveness of our approach and its potential applications in urban mobility. Overall, this study marks the pioneering work of designing an LLM agent framework for activity generation based on real-world human activity data, offering a promising tool for urban mobility analysis.

Efficient inference in high-dimensional models remains a central challenge in machine learning. This paper introduces the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, a fusion of the Ensemble Kalman filter and Gaussian Belief Propagation (GaBP) methods. GEnBP updates ensembles by passing low-rank local messages over a graphical model. This combination inherits favourable qualities from each method. Ensemble techniques allow GEnBP to handle high-dimensional states, parameters and intricate, noisy, black-box generation processes. The use of local messages in a graphical model structure ensures that the approach can efficiently handle complex dependence structures. GEnBP is advantageous when the ensemble size may be considerably smaller than the inference dimension. This scenario often arises in fields such as spatiotemporal modelling, image processing and physical model inversion. GEnBP can be applied to general problem structures, including data assimilation, system identification and hierarchical models. Supporting code is available at //github.com/danmackinlay/GEnBP

We describe Bayesian inference for the mean and variance of bounded data protected by differential privacy and modeled as Gaussian. Using this setting, we demonstrate that analysts can and should take the constraints imposed by the bounds into account when specifying prior distributions. Additionally, we provide theoretical and empirical results regarding what classes of default priors produce valid inference for a differentially private release in settings where substantial prior information is not available. We discuss how these results can be applied to Bayesian inference for regression with differentially private data.

Large language models (LLMs) have raised concerns about potential security threats despite performing significantly in Natural Language Processing (NLP). Backdoor attacks initially verified that LLM is doing substantial harm at all stages, but the cost and robustness have been criticized. Attacking LLMs is inherently risky in security review, while prohibitively expensive. Besides, the continuous iteration of LLMs will degrade the robustness of backdoors. In this paper, we propose TrojanRAG, which employs a joint backdoor attack in the Retrieval-Augmented Generation, thereby manipulating LLMs in universal attack scenarios. Specifically, the adversary constructs elaborate target contexts and trigger sets. Multiple pairs of backdoor shortcuts are orthogonally optimized by contrastive learning, thus constraining the triggering conditions to a parameter subspace to improve the matching. To improve the recall of the RAG for the target contexts, we introduce a knowledge graph to construct structured data to achieve hard matching at a fine-grained level. Moreover, we normalize the backdoor scenarios in LLMs to analyze the real harm caused by backdoors from both attackers' and users' perspectives and further verify whether the context is a favorable tool for jailbreaking models. Extensive experimental results on truthfulness, language understanding, and harmfulness show that TrojanRAG exhibits versatility threats while maintaining retrieval capabilities on normal queries.

We present a novel topology-preserving 3D medial axis computation framework based on volumetric restricted power diagram (RPD), while preserving the medial features and geometric convergence simultaneously, for both 3D CAD and organic shapes. The volumetric RPD discretizes the input 3D volume into sub-regions given a set of medial spheres. With this intermediate structure, we convert the homotopy equivalency between the generated medial mesh and the input 3D shape into a localized contractibility checking for each restricted element (power cell, power face, power edge), by checking their connected components and Euler characteristics. We further propose a fractional Euler characteristic algorithm for efficient GPU-based computation of Euler characteristic for each restricted element on the fly while computing the volumetric RPD. Compared with existing voxel-based or point-cloud-based methods, our approach is the first to adaptively and directly revise the medial mesh without globally modifying the dependent structure, such as voxel size or sampling density, while preserving its topology and medial features. In comparison with the feature preservation method MATFP, our method provides geometrically comparable results with fewer spheres and more robustly captures the topology of the input 3D shape.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.

北京阿比特科技有限公司