Terms of Service (ToS) form an integral part of any agreement as it defines the legal relationship between a service provider and an end-user. Not only do they establish and delineate reciprocal rights and responsibilities, but they also provide users with information on essential aspects of contracts that pertain to the use of digital spaces. These aspects include a wide range of topics, including limitation of liability, data protection, etc. Users tend to accept the ToS without going through it before using any application or service. Such ignorance puts them in a potentially weaker situation in case any action is required. Existing methodologies for the detection or classification of unfair clauses are however obsolete and show modest performance. In this research paper, we present SOTA(State of The Art) results on unfair clause detection from ToS documents based on unprecedented Fine-tuning BERT in integration with SVC(Support Vector Classifier). The study shows proficient performance with a macro F1-score of 0.922 at unfair clause detection, and superior performance is also shown in the classification of unfair clauses by each tag. Further, a comparative analysis is performed by answering research questions on the Transformer models utilized. In order to further research and experimentation the code and results are made available on //github.com/batking24/Unfair-TOS-An-Automated-Approach-based-on-Fine-tuning-BERT-in-conjunction-with-ML.
Visual entailment (VE) is a multimodal reasoning task consisting of image-sentence pairs whereby a promise is defined by an image, and a hypothesis is described by a sentence. The goal is to predict whether the image semantically entails the sentence. VE systems have been widely adopted in many downstream tasks. Metamorphic testing is the commonest technique for AI algorithms, but it poses a significant challenge for VE testing. They either only consider perturbations on single modality which would result in ineffective tests due to the destruction of the relationship of image-text pair, or just conduct shallow perturbations on the inputs which can hardly detect the decision error made by VE systems. Motivated by the fact that objects in the image are the fundamental element for reasoning, we propose VEglue, an object-aligned joint erasing approach for VE systems testing. It first aligns the object regions in the premise and object descriptions in the hypothesis to identify linked and un-linked objects. Then, based on the alignment information, three Metamorphic Relations are designed to jointly erase the objects of the two modalities. We evaluate VEglue on four widely-used VE systems involving two public datasets. Results show that VEglue could detect 11,609 issues on average, which is 194%-2,846% more than the baselines. In addition, VEglue could reach 52.5% Issue Finding Rate (IFR) on average, and significantly outperform the baselines by 17.1%-38.2%. Furthermore, we leverage the tests generated by VEglue to retrain the VE systems, which largely improves model performance (50.8% increase in accuracy) on newly generated tests without sacrificing the accuracy on the original test set.
The problem of distributed optimization requires a group of agents to reach agreement on a parameter that minimizes the average of their local cost functions using information received from their neighbors. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to malicious (or ``Byzantine'') agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or provide analysis under certain assumptions on the statistical properties of the functions at the agents. In this paper, we propose a resilient distributed optimization algorithm for multi-dimensional convex functions. Our scheme involves two filtering steps at each iteration of the algorithm: (1) distance-based and (2) component-wise removal of extreme states. We show that this algorithm can mitigate the impact of up to $F$ Byzantine agents in the neighborhood of each regular node, without knowing the identities of the Byzantine agents in advance. In particular, we show that if the network topology satisfies certain conditions, all of the regular states are guaranteed to asymptotically converge to a bounded region that contains the global minimizer.
Understanding and shaping the behaviour of Large Language Models (LLMs) is increasingly important as applications become more powerful and more frequently adopted. This paper introduces a machine unlearning method specifically designed for LLMs. We introduce a selective pruning method for LLMs that removes neurons based on their relative importance on a targeted capability compared to overall network performance. This approach is a compute- and data-efficient method for identifying and removing neurons that enable specific behaviours. Our findings reveal that both feed-forward and attention neurons in LLMs are specialized; that is, for specific tasks, certain neurons are more crucial than others.
Question answering (QA) can only make progress if we know if an answer is correct, but for many of the most challenging and interesting QA examples, current evaluation metrics to determine answer equivalence (AE) often do not align with human judgments, particularly more verbose, free-form answers from large language models (LLM). There are two challenges: a lack of data and that models are too big: LLM-based scorers can correlate better with human judges, but this task has only been tested on limited QA datasets, and even when available, update of the model is limited because LLMs are large and often expensive. We rectify both of these issues by providing clear and consistent guidelines for evaluating AE in machine QA adopted from professional human QA contests. We also introduce a combination of standard evaluation and a more efficient, robust, and lightweight discriminate AE classifier-based matching method (CFMatch, smaller than 1 MB), trained and validated to more accurately evaluate answer correctness in accordance with adopted expert AE rules that are more aligned with human judgments.
Despite the importance of trust in human-AI interactions, researchers must adopt questionnaires from other disciplines that lack validation in the AI context. Motivated by the need for reliable and valid measures, we investigated the psychometric quality of two trust questionnaires, the Trust between People and Automation scale (TPA) by Jian et al. (2000) and the Trust Scale for the AI Context (TAI) by Hoffman et al. (2023). In a pre-registered online experiment (N = 1485), participants observed interactions with trustworthy and untrustworthy AI (autonomous vehicle and chatbot). Results support the psychometric quality of the TAI while revealing opportunities to improve the TPA, which we outline in our recommendations for using the two questionnaires. Furthermore, our findings provide additional empirical evidence of trust and distrust as two distinct constructs that may coexist independently. Building on our findings, we highlight the opportunities and added value of measuring both trust and distrust in human-AI research and advocate for further work on both constructs.
We introduces Crimson, a system that enhances the strategic reasoning capabilities of Large Language Models (LLMs) within the realm of cybersecurity. By correlating CVEs with MITRE ATT&CK techniques, Crimson advances threat anticipation and strategic defense efforts. Our approach includes defining and evaluating cybersecurity strategic tasks, alongside implementing a comprehensive human-in-the-loop data-synthetic workflow to develop the CVE-to-ATT&CK Mapping (CVEM) dataset. We further enhance LLMs' reasoning abilities through a novel Retrieval-Aware Training (RAT) process and its refined iteration, RAT-R. Our findings demonstrate that an LLM fine-tuned with our techniques, possessing 7 billion parameters, approaches the performance level of GPT-4, showing markedly lower rates of hallucination and errors, and surpassing other models in strategic reasoning tasks. Moreover, domain-specific fine-tuning of embedding models significantly improves performance within cybersecurity contexts, underscoring the efficacy of our methodology. By leveraging Crimson to convert raw vulnerability data into structured and actionable insights, we bolster proactive cybersecurity defenses.
More than one hundred benchmarks have been developed to test the commonsense knowledge and commonsense reasoning abilities of artificial intelligence (AI) systems. However, these benchmarks are often flawed and many aspects of common sense remain untested. Consequently, we do not currently have any reliable way of measuring to what extent existing AI systems have achieved these abilities. This paper surveys the development and uses of AI commonsense benchmarks. We discuss the nature of common sense; the role of common sense in AI; the goals served by constructing commonsense benchmarks; and desirable features of commonsense benchmarks. We analyze the common flaws in benchmarks, and we argue that it is worthwhile to invest the work needed ensure that benchmark examples are consistently high quality. We survey the various methods of constructing commonsense benchmarks. We enumerate 139 commonsense benchmarks that have been developed: 102 text-based, 18 image-based, 12 video based, and 7 simulated physical environments. We discuss the gaps in the existing benchmarks and aspects of commonsense reasoning that are not addressed in any existing benchmark. We conclude with a number of recommendations for future development of commonsense AI benchmarks.
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.
Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.
Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .