The problem of distributed optimization requires a group of agents to reach agreement on a parameter that minimizes the average of their local cost functions using information received from their neighbors. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to malicious (or ``Byzantine'') agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or provide analysis under certain assumptions on the statistical properties of the functions at the agents. In this paper, we propose a resilient distributed optimization algorithm for multi-dimensional convex functions. Our scheme involves two filtering steps at each iteration of the algorithm: (1) distance-based and (2) component-wise removal of extreme states. We show that this algorithm can mitigate the impact of up to $F$ Byzantine agents in the neighborhood of each regular node, without knowing the identities of the Byzantine agents in advance. In particular, we show that if the network topology satisfies certain conditions, all of the regular states are guaranteed to asymptotically converge to a bounded region that contains the global minimizer.
As reinforcement learning techniques are increasingly applied to real-world decision problems, attention has turned to how these algorithms use potentially sensitive information. We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions. We give examples of how this setting covers real-world problems in privacy for sequential decision-making. We solve this problem in the policy gradients framework by introducing a regularizer based on the mutual information (MI) between the sensitive state and the actions. We develop a model-based stochastic gradient estimator for optimization of privacy-constrained policies. We also discuss an alternative MI regularizer that serves as an upper bound to our main MI regularizer and can be optimized in a model-free setting, and a powerful direct estimator that can be used in an environment with differentiable dynamics. We contrast previous work in differentially-private RL to our mutual-information formulation of information disclosure. Experimental results show that our training method results in policies that hide the sensitive state, even in challenging high-dimensional tasks.
In the rapidly evolving field of artificial intelligence, the ability to harness and integrate knowledge across various domains stands as a paramount challenge and opportunity. This study introduces a novel approach to cross-domain knowledge discovery through the deployment of multi-AI agents, each specialized in distinct knowledge domains. These AI agents, designed to function as domain-specific experts, collaborate in a unified framework to synthesize and provide comprehensive insights that transcend the limitations of single-domain expertise. By facilitating seamless interaction among these agents, our platform aims to leverage the unique strengths and perspectives of each, thereby enhancing the process of knowledge discovery and decision-making. We present a comparative analysis of the different multi-agent workflow scenarios evaluating their performance in terms of efficiency, accuracy, and the breadth of knowledge integration. Through a series of experiments involving complex, interdisciplinary queries, our findings demonstrate the superior capability of domain specific multi-AI agent system in identifying and bridging knowledge gaps. This research not only underscores the significance of collaborative AI in driving innovation but also sets the stage for future advancements in AI-driven, cross-disciplinary research and application. Our methods were evaluated on a small pilot data and it showed a trend we expected, if we increase the amount of data we custom train the agents, the trend is expected to be more smooth.
We identify the nonlinear normal modes spawning from the stable equilibrium of a double pendulum under gravity, and we establish their connection to homoclinic orbits through the unstable upright position as energy increases. This result is exploited to devise an efficient swing-up strategy for a double pendulum with weak, saturating actuators. Our approach involves stabilizing the system onto periodic orbits associated with the nonlinear modes while gradually injecting energy. Since these modes are autonomous system evolutions, the required control effort for stabilization is minimal. Even with actuator limitations of less than 1% of the maximum gravitational torque, the proposed method accomplishes the swing-up of the double pendulum by allowing sufficient time.
We consider a Multi-Agent Path Finding (MAPF) setting where agents have been assigned a plan, but during its execution some agents are delayed. Instead of replanning from scratch when such a delay occurs, we propose delay introduction, whereby we delay some additional agents so that the remainder of the plan can be executed safely. We show that finding the minimum number of additional delays is APX-Hard, i.e., it is NP-Hard to find a $(1+\varepsilon)$-approximation for some $\varepsilon>0$. However, in practice we can find optimal delay-introductions using Conflict-Based Search for very large numbers of agents, and both planning time and the resulting length of the plan are comparable, and sometimes outperform the state-of-the-art heuristics for replanning.
Extrinsic manipulation, the use of environment contacts to achieve manipulation objectives, enables strategies that are otherwise impossible with a parallel jaw gripper. However, orchestrating a long-horizon sequence of contact interactions between the robot, object, and environment is notoriously challenging due to the scene diversity, large action space, and difficult contact dynamics. We observe that most extrinsic manipulation are combinations of short-horizon primitives, each of which depend strongly on initializing from a desirable contact configuration to succeed. Therefore, we propose to generalize one extrinsic manipulation trajectory to diverse objects and environments by retargeting contact requirements. We prepare a single library of robust short-horizon, goal-conditioned primitive policies, and design a framework to compose state constraints stemming from contacts specifications of each primitive. Given a test scene and a single demo prescribing the primitive sequence, our method enforces the state constraints on the test scene and find intermediate goal states using inverse kinematics. The goals are then tracked by the primitive policies. Using a 7+1 DoF robotic arm-gripper system, we achieved an overall success rate of 80.5% on hardware over 4 long-horizon extrinsic manipulation tasks, each with up to 4 primitives. Our experiments cover 10 objects and 6 environment configurations. We further show empirically that our method admits a wide range of demonstrations, and that contact retargeting is indeed the key to successfully combining primitives for long-horizon extrinsic manipulation. Code and additional details are available at stanford-tml.github.io/extrinsic-manipulation.
Self-interested routing polices from individual users in a system can collectively lead to poor aggregate congestion in routing networks. The introduction of altruistic agents, whose goal is to benefit other agents in the system, can seemingly improve aggregate congestion. However, it is known in that in some network routing problems, altruistic agents can actually worsen congestion compared to that which would arise in the presence of a homogeneously selfish population. This paper provides a thorough investigation into the necessary conditions for altruists to be guaranteed to improve total congestion. In particular, we study the class of series-parallel non-atomic congestion games, where one sub-population is altruistic and the other is selfish. We find that a game is guaranteed to have improved congestion in the presence of altruistic agents (even if only a small part of the total population) compared to the homogeneously selfish version of the game, provided the network is symmetric, where all agents are given access to all paths in the network, and the series-parallel network for the game does not have sub-networks which emulate Braess's paradox -- a phenomenon we refer to as a Braess-resistant network. Our results appear to be the most complete characterization of when behavior that is designed to improve total congestion (which we refer to as altruism) is actually guaranteed to do so.
The stochastic finite volume method offers an efficient one-pass approach for assessing uncertainty in hyperbolic conservation laws. Still, it struggles with the curse of dimensionality when dealing with multiple stochastic variables. We introduce the stochastic finite volume method within the tensor-train framework to counteract this limitation. This integration, however, comes with its own set of difficulties, mainly due to the propensity for shock formation in hyperbolic systems. To overcome these issues, we have developed a tensor-train-adapted stochastic finite volume method that employs a global WENO reconstruction, making it suitable for such complex systems. This approach represents the first step in designing tensor-train techniques for hyperbolic systems and conservation laws involving shocks.
Collaborative perception aims to mitigate the limitations of single-agent perception, such as occlusions, by facilitating data exchange among multiple agents. However, most current works consider a homogeneous scenario where all agents use identity sensors and perception models. In reality, heterogeneous agent types may continually emerge and inevitably face a domain gap when collaborating with existing agents. In this paper, we introduce a new open heterogeneous problem: how to accommodate continually emerging new heterogeneous agent types into collaborative perception, while ensuring high perception performance and low integration cost? To address this problem, we propose HEterogeneous ALliance (HEAL), a novel extensible collaborative perception framework. HEAL first establishes a unified feature space with initial agents via a novel multi-scale foreground-aware Pyramid Fusion network. When heterogeneous new agents emerge with previously unseen modalities or models, we align them to the established unified space with an innovative backward alignment. This step only involves individual training on the new agent type, thus presenting extremely low training costs and high extensibility. To enrich agents' data heterogeneity, we bring OPV2V-H, a new large-scale dataset with more diverse sensor types. Extensive experiments on OPV2V-H and DAIR-V2X datasets show that HEAL surpasses SOTA methods in performance while reducing the training parameters by 91.5% when integrating 3 new agent types. We further implement a comprehensive codebase at: //github.com/yifanlu0227/HEAL
Contemporary conversational systems often present a significant limitation: their responses lack the emotional depth and disfluent characteristic of human interactions. This absence becomes particularly noticeable when users seek more personalized and empathetic interactions. Consequently, this makes them seem mechanical and less relatable to human users. Recognizing this gap, we embarked on a journey to humanize machine communication, to ensure AI systems not only comprehend but also resonate. To address this shortcoming, we have designed an innovative speech synthesis pipeline. Within this framework, a cutting-edge language model introduces both human-like emotion and disfluencies in a zero-shot setting. These intricacies are seamlessly integrated into the generated text by the language model during text generation, allowing the system to mirror human speech patterns better, promoting more intuitive and natural user interactions. These generated elements are then adeptly transformed into corresponding speech patterns and emotive sounds using a rule-based approach during the text-to-speech phase. Based on our experiments, our novel system produces synthesized speech that's almost indistinguishable from genuine human communication, making each interaction feel more personal and authentic.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.