The stochastic finite volume method offers an efficient one-pass approach for assessing uncertainty in hyperbolic conservation laws. Still, it struggles with the curse of dimensionality when dealing with multiple stochastic variables. We introduce the stochastic finite volume method within the tensor-train framework to counteract this limitation. This integration, however, comes with its own set of difficulties, mainly due to the propensity for shock formation in hyperbolic systems. To overcome these issues, we have developed a tensor-train-adapted stochastic finite volume method that employs a global WENO reconstruction, making it suitable for such complex systems. This approach represents the first step in designing tensor-train techniques for hyperbolic systems and conservation laws involving shocks.
Continuous-time approximation of Stochastic Gradient Descent (SGD) is a crucial tool to study its escaping behaviors from stationary points. However, existing stochastic differential equation (SDE) models fail to fully capture these behaviors, even for simple quadratic objectives. Built on a novel stochastic backward error analysis framework, we derive the Hessian-Aware Stochastic Modified Equation (HA-SME), an SDE that incorporates Hessian information of the objective function into both its drift and diffusion terms. Our analysis shows that HA-SME matches the order-best approximation error guarantee among existing SDE models in the literature, while achieving a significantly reduced dependence on the smoothness parameter of the objective. Further, for quadratic objectives, under mild conditions, HA-SME is proved to be the first SDE model that recovers exactly the SGD dynamics in the distributional sense. Consequently, when the local landscape near a stationary point can be approximated by quadratics, HA-SME is expected to accurately predict the local escaping behaviors of SGD.
Bayesian hypothesis tests leverage posterior probabilities, Bayes factors, or credible intervals to inform data-driven decision making. We propose a framework for power curve approximation with such hypothesis tests. We present a fast approach to explore the approximate sampling distribution of posterior probabilities when the conditions for the Bernstein-von Mises theorem are satisfied. We extend that approach to consider segments of such sampling distributions in a targeted manner for each sample size explored. These sampling distribution segments are used to construct power curves for various types of posterior analyses. Our resulting method for power curve approximation is orders of magnitude faster than conventional power curve estimation for Bayesian hypothesis tests. We also prove the consistency of the corresponding power estimates and sample size recommendations under certain conditions.
Most automated program verifiers for separation logic use either symbolic execution or verification condition generation to extract proof obligations, which are then handed over to an SMT solver. Existing verification algorithms are designed to be sound, but differ in performance and completeness. These characteristics may also depend on the programs and properties to be verified. Consequently, developers and users of program verifiers have to select a verification algorithm carefully for their application domain. Taking an informed decision requires a systematic comparison of the performance and completeness characteristics of the verification algorithms used by modern separation logic verifiers, but such a comparison does not exist. This paper describes five verification algorithms for separation logic, three that are used in existing tools and two novel algorithms that combine characteristics of existing symbolic execution and verification condition generation algorithms. A detailed evaluation of implementations of these five algorithms in the Viper infrastructure assesses their performance and completeness for different classes of input programs. Based on the experimental results, we identify candidate portfolios of algorithms that maximize completeness and performance.
Racial and other demographic imputation is necessary for many applications, especially in auditing disparities and outreach targeting in political campaigns. The canonical approach is to construct continuous predictions -- e.g., based on name and geography -- and then to $\textit{discretize}$ the predictions by selecting the most likely class (argmax). We study how this practice produces $\textit{discretization bias}$. In particular, we show that argmax labeling, as used by a prominent commercial voter file vendor to impute race/ethnicity, results in a substantial under-count of African-American voters, e.g., by 28.2% points in North Carolina. This bias can have substantial implications in downstream tasks that use such labels. We then introduce a $\textit{joint optimization}$ approach -- and a tractable $\textit{data-driven thresholding}$ heuristic -- that can eliminate this bias, with negligible individual-level accuracy loss. Finally, we theoretically analyze discretization bias, show that calibrated continuous models are insufficient to eliminate it, and that an approach such as ours is necessary. Broadly, we warn researchers and practitioners against discretizing continuous demographic predictions without considering downstream consequences.
We perform detailed theoretical analysis of an expectation-maximization-based algorithm recently proposed in for solving a variation of the 3D registration problem, named multi-model 3D registration. Despite having shown superior empirical results, did not theoretically justify the conditions under which the EM approach converges to the ground truth. In this project, we aim to close this gap by establishing such conditions. In particular, the analysis revolves around the usage of probabilistic tail bounds that are developed and applied in various instances throughout the course. The problem studied in this project stands as another example, different from those seen in the course, in which tail-bounds help advance our algorithmic understanding in a probabilistic way. We provide self-contained background materials on 3D Registration
Deep cooperative multi-agent reinforcement learning has demonstrated its remarkable success over a wide spectrum of complex control tasks. However, recent advances in multi-agent learning mainly focus on value decomposition while leaving entity interactions still intertwined, which easily leads to over-fitting on noisy interactions between entities. In this work, we introduce a novel interactiOn Pattern disenTangling (OPT) method, to disentangle the entity interactions into interaction prototypes, each of which represents an underlying interaction pattern within a subgroup of the entities. OPT facilitates filtering the noisy interactions between irrelevant entities and thus significantly improves generalizability as well as interpretability. Specifically, OPT introduces a sparse disagreement mechanism to encourage sparsity and diversity among discovered interaction prototypes. Then the model selectively restructures these prototypes into a compact interaction pattern by an aggregator with learnable weights. To alleviate the training instability issue caused by partial observability, we propose to maximize the mutual information between the aggregation weights and the history behaviors of each agent. Experiments on single-task, multi-task and zero-shot benchmarks demonstrate that the proposed method yields results superior to the state-of-the-art counterparts. Our code is available at //github.com/liushunyu/OPT.
State-of-the-art sequential reasoning in Large Language Models (LLMs) has expanded the capabilities of Copilots beyond conversational tasks to complex function calling, managing thousands of API calls. However, the tendency of compositional prompting to segment tasks into multiple steps, each requiring a round-trip to the GPT APIs, leads to increased system latency and costs. Although recent advancements in parallel function calling have improved tool execution per API call, they may necessitate more detailed in-context instructions and task breakdown at the prompt level, resulting in higher engineering and production costs. Inspired by the hardware design principles of multiply-add (MAD) operations, which fuse multiple arithmetic operations into a single task from the compiler's perspective, we propose LLM-Tool Compiler, which selectively fuses similar types of tool operations under a single function at runtime, presenting them as a unified task to the LLM. This selective fusion inherently enhances parallelization and efficiency. Benchmarked on a large-scale Copilot platform, LLM-Tool Compiler achieves up to four times more parallel calls than existing methods, reducing token costs and latency by up to 40% and 12%, respectively.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.