Contemporary conversational systems often present a significant limitation: their responses lack the emotional depth and disfluent characteristic of human interactions. This absence becomes particularly noticeable when users seek more personalized and empathetic interactions. Consequently, this makes them seem mechanical and less relatable to human users. Recognizing this gap, we embarked on a journey to humanize machine communication, to ensure AI systems not only comprehend but also resonate. To address this shortcoming, we have designed an innovative speech synthesis pipeline. Within this framework, a cutting-edge language model introduces both human-like emotion and disfluencies in a zero-shot setting. These intricacies are seamlessly integrated into the generated text by the language model during text generation, allowing the system to mirror human speech patterns better, promoting more intuitive and natural user interactions. These generated elements are then adeptly transformed into corresponding speech patterns and emotive sounds using a rule-based approach during the text-to-speech phase. Based on our experiments, our novel system produces synthesized speech that's almost indistinguishable from genuine human communication, making each interaction feel more personal and authentic.
Instrumental variables (IVs) provide a powerful strategy for identifying causal effects in the presence of unobservable confounders. Within the nonparametric setting (NPIV), recent methods have been based on nonlinear generalizations of Two-Stage Least Squares and on minimax formulations derived from moment conditions or duality. In a novel direction, we show how to formulate a functional stochastic gradient descent algorithm to tackle NPIV regression by directly minimizing the populational risk. We provide theoretical support in the form of bounds on the excess risk, and conduct numerical experiments showcasing our method's superior stability and competitive performance relative to current state-of-the-art alternatives. This algorithm enables flexible estimator choices, such as neural networks or kernel based methods, as well as non-quadratic loss functions, which may be suitable for structural equations beyond the setting of continuous outcomes and additive noise. Finally, we demonstrate this flexibility of our framework by presenting how it naturally addresses the important case of binary outcomes, which has received far less attention by recent developments in the NPIV literature.
We consider outlier-robust and sparse estimation of linear regression coefficients, when the covariates and the noises are contaminated by adversarial outliers and noises are sampled from a heavy-tailed distribution. Our results present sharper error bounds under weaker assumptions than prior studies that share similar interests with this study. Our analysis relies on some sharp concentration inequalities resulting from generic chaining.
We propose a framework for measuring attentional agency - the ability to allocate one's attention according to personal desires, goals, and intentions - on digital platforms. Platforms extend people's limited powers of attention by extrapolating their preferences to large collections of previously unconsidered informational objects. However, platforms typically also allow people to influence one another's attention. We introduce a formal framework for measuring how much a given platform empowers people to both pull information into their own attentional field and push information into the attentional fields of others. We also use these definitions to shed light on the implications of generative foundation models, which enable users to bypass the implicit "attentional bargain" that underlies embedded advertising and other methods for capturing economic value from informational goods. We conclude with a set of policy strategies that can be used to understand and reshape the distribution of attentional agency online.
Low-bit quantization emerges as one of the most promising compression approaches for deploying deep neural networks on edge devices. Mixed-precision quantization leverages a mixture of bit-widths to unleash the accuracy and efficiency potential of quantized models. However, existing mixed-precision quantization methods rely on simulations in high-performance devices to achieve accuracy and efficiency trade-offs in immense search spaces. This leads to a non-negligible gap between the estimated efficiency metrics and the actual hardware that makes quantized models far away from the optimal accuracy and efficiency, and also causes the quantization process to rely on additional high-performance devices. In this paper, we propose an On-Chip Hardware-Aware Quantization (OHQ) framework, performing hardware-aware mixed-precision quantization on deployed edge devices to achieve accurate and efficient computing. Specifically, for efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator and avoid optimization errors caused by inaccurate simulation. For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario, getting rid of the dependence of the quantization process on high computing power. By synthesizing insights from quantized models and hardware through linear optimization, we can obtain optimized bit-width configurations to achieve outstanding performance on accuracy and efficiency. We evaluate inference accuracy and acceleration with quantization for various architectures and compression ratios on hardware. OHQ achieves 70% and 73% accuracy for ResNet-18 and MobileNetV3, respectively, and can reduce latency by 15~30% compared to INT8 on real deployment.
Grounding the reasoning ability of large language models (LLMs) for embodied tasks is challenging due to the complexity of the physical world. Especially, LLM planning for multi-agent collaboration requires communication of agents or credit assignment as the feedback to re-adjust the proposed plans and achieve effective coordination. However, existing methods that overly rely on physical verification or self-reflection suffer from excessive and inefficient querying of LLMs. In this paper, we propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans. Specifically, we perform critic regression to learn a sequential advantage function from LLM-planned data, and then treat the LLM planner as an optimizer to generate actions that maximize the advantage function. It endows the LLM with the foresight to discern whether the action contributes to accomplishing the final task. We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems. Experiments on Overcooked-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents and query rounds of LLMs, demonstrating its high efficiency for grounding LLMs. More results are given at \url{//read-llm.github.io/}.
Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.
The acquisition of manipulation skills through language instruction remains an unresolved challenge. Recently, vision-language models have made significant progress in teaching robots these skills. However, their performance is restricted to a narrow range of simple tasks. In this paper, we propose that vision-language models can provide a superior source of rewards for agents. Our method decomposes complex tasks into simpler sub-goals, enabling better task comprehension and avoiding potential failures with sparse failure guidance. Empirical evidence demonstrates that our algorithm consistently outperforms baselines such as CLIP, LIV, and RoboCLIP. Specifically, our algorithm achieves a $5.4\times$ higher average success rate compared to the best baseline, RoboCLIP, across a series of manipulation tasks. It has shown a comprehensive understanding of a wide range of robotic manipulation tasks.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.