亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In large epidemiologic studies, self-reported outcomes are often used to record disease status more frequently than by gold standard diagnostic tests alone. While self-reported disease outcomes are easier to obtain than diagnostic test results, they are often prone to error. There has recently been interest in using error-prone, auxiliary outcomes to improve the efficiency of inference for discrete time-to-event analyses. We have developed a new augmented likelihood approach that incorporates auxiliary data into the analysis of gold standard time-to-event outcome, which can be considered when self-reported outcomes are available in addition to a gold standard endpoint. We conduct a numerical study to show how we can improve statistical efficiency by using the proposed method instead of standard approaches for interval-censored survival data that do not leverage auxiliary data. We also extended this method for the complex survey design setting so that it can be applied in our motivating data example. We apply this method to data from the Hispanic Community Health Study/Study of Latinos in order to assess the association between energy and protein intake and the risk of incident diabetes. In our application, we demonstrate how our method can be used in combination with regression calibration to additionally address the covariate measurement error in the self-reported diet.

相關內容

Many causal inference approaches have focused on identifying an individual's outcome change due to a potential treatment, or the individual treatment effect (ITE), from observational studies. Rather than only estimating the ITE, we propose Collaborating Causal Networks (CCN) to estimate the full potential outcome distributions. This modification facilitates estimating the utility of each treatment and allows for individual variation in utility functions (e.g., variability in risk tolerance). We show that CCN learns distributions that asymptotically capture the correct potential outcome distributions under standard causal inference assumptions. Furthermore, we develop a new adjustment approach that is empirically effective in alleviating sample imbalance between treatment groups in observational studies. We evaluate CCN by extensive empirical experiments and demonstrate improved distribution estimates compared to existing Bayesian and Generative Adversarial Network-based methods. Additionally, CCN empirically improves decisions over a variety of utility functions.

One of the main features of interest in analysing the light curves of stars is the underlying periodic behaviour. The corresponding observations are a complex type of time series with unequally spaced time points and are sometimes accompanied by varying measures of accuracy. The main tools for analysing these type of data rely on the periodogram-like functions, constructed with a desired feature so that the peaks indicate the presence of a potential period. In this paper, we explore a particular periodogram for the irregularly observed time series data, similar to Thieler et. al. (2013). We identify the potential periods at the appropriate peaks and more importantly with a quantifiable uncertainty. Our approach is shown to easily generalise to non-parametric methods including a weighted Gaussian process regression periodogram. We also extend this approach to correlated background noise. The proposed method for period detection relies on a test based on quadratic forms with normally distributed components. We implement the saddlepoint approximation, as a faster and more accurate alternative to the simulation-based methods that are currently used. The power analysis of the testing methodology is reported together with applications using light curves from the Hunting Outbursting Young Stars citizen science project.

Researchers are often faced with evaluating the effect of a policy or program that was simultaneously initiated across an entire population of units at a single point in time, and its effects over the targeted population can manifest at any time period afterwards. In the presence of data measured over time, Bayesian time series models have been used to impute what would have happened after the policy was initiated, had the policy not taken place, in order to estimate causal effects. However, the considerations regarding the definition of the target estimands, the underlying assumptions, the plausibility of such assumptions, and the choice of an appropriate model have not been thoroughly investigated. In this paper, we establish useful estimands for the evaluation of large-scale policies. We discuss that imputation of missing potential outcomes relies on an assumption which, even though untestable, can be partially evaluated using observed data. We illustrate an approach to evaluate this key causal assumption and facilitate model elicitation based on data from the time interval before policy initiation and using classic statistical techniques. As an illustration, we study the Hospital Readmissions Reduction Program (HRRP), a US federal intervention aiming to improve health outcomes for patients with pneumonia, acute myocardial infraction, or congestive failure admitted to a hospital. We evaluate the effect of the HRRP on population mortality across the US and in four geographic subregions, and at different time windows. We find that the HRRP increased mortality from the three targeted conditions across most scenarios considered, and is likely to have had a detrimental effect on public health.

Ongoing traffic changes, including those triggered by the COVID-19 pandemic, reveal the necessity to adapt our public transport systems to the ever-changing users' needs. This work shows that single and multi objective stances can be synergistically combined to better answer the transit network design problem (TNDP). Single objective formulations are dynamically inferred from the rating of networks in the approximated (multi-objective) Pareto Front, where a regression approach is used to infer the optimal weights of transfer needs, times, distances, coverage, and costs. As a guiding case study, the solution is applied to the multimodal public transport network in the city of Lisbon, Portugal. The system takes individual trip data given by smartcard validations at CARRIS buses and METRO subway stations and uses them to estimate the origin-destination demand in the city. Then, Genetic Algorithms are used, considering both single and multi objective approaches, to redesign the bus network that better fits the observed traffic demand. The proposed TNDP optimization proved to improve results, with reductions in objective functions of up to 28.3%. The system managed to extensively reduce the number of routes, and all passenger related objectives, including travel time and transfers per trip, significantly improve. Grounded on automated fare collection data, the system can incrementally redesign the bus network to dynamically handle ongoing changes to the city traffic.

Monitoring and understanding affective states are important aspects of healthy functioning and treatment of mood-based disorders. Recent advancements of ubiquitous wearable technologies have increased the reliability of such tools in detecting and accurately estimating mental states (e.g., mood, stress, etc.), offering comprehensive and continuous monitoring of individuals over time. Previous attempts to model an individual's mental state were limited to subjective approaches or the inclusion of only a few modalities (i.e., phone, watch). Thus, the goal of our study was to investigate the capacity to more accurately predict affect through a fully automatic and objective approach using multiple commercial devices. Longitudinal physiological data and daily assessments of emotions were collected from a sample of college students using smart wearables and phones for over a year. Results showed that our model was able to predict next-day affect with accuracy comparable to state of the art methods.

In this paper we propose a new optimization model for maximum likelihood estimation of causal and invertible ARMA models. Through a set of numerical experiments we show how our proposed model outperforms, both in terms of quality of the fitted model as well as in the computational time, the classical estimation procedure based on Jones reparametrization. We also propose a regularization term in the model and we show how this addition improves the out of sample quality of the fitted model. This improvement is achieved thanks to an increased penalty on models close to the non causality or non invertibility boundary.

In network analysis, how to estimate the number of communities $K$ is a fundamental problem. We consider a broad setting where we allow severe degree heterogeneity and a wide range of sparsity levels, and propose Stepwise Goodness-of-Fit (StGoF) as a new approach. This is a stepwise algorithm, where for $m = 1, 2, \ldots$, we alternately use a community detection step and a goodness-of-fit (GoF) step. We adapt SCORE \cite{SCORE} for community detection, and propose a new GoF metric. We show that at step $m$, the GoF metric diverges to $\infty$ in probability for all $m < K$ and converges to $N(0,1)$ if $m = K$. This gives rise to a consistent estimate for $K$. Also, we discover the right way to define the signal-to-noise ratio (SNR) for our problem and show that consistent estimates for $K$ do not exist if $\mathrm{SNR} \goto 0$, and StGoF is uniformly consistent for $K$ if $\mathrm{SNR} \goto \infty$. Therefore, StGoF achieves the optimal phase transition. Similar stepwise methods (e.g., \cite{wang2017likelihood, ma2018determining}) are known to face analytical challenges. We overcome the challenges by using a different stepwise scheme in StGoF and by deriving sharp results that are not available before. The key to our analysis is to show that SCORE has the {\it Non-Splitting Property (NSP)}. Primarily due to a non-tractable rotation of eigenvectors dictated by the Davis-Kahan $\sin(\theta)$ theorem, the NSP is non-trivial to prove and requires new techniques we develop.

In this paper, we examine the use case of general adversarial networks (GANs) in the field of marketing. In particular, we analyze how GAN models can replicate text patterns from successful product listings on Airbnb, a peer-to-peer online market for short-term apartment rentals. To do so, we define the Diehl-Martinez-Kamalu (DMK) loss function as a new class of functions that forces the model's generated output to include a set of user-defined keywords. This allows the general adversarial network to recommend a way of rewording the phrasing of a listing description to increase the likelihood that it is booked. Although we tailor our analysis to Airbnb data, we believe this framework establishes a more general model for how generative algorithms can be used to produce text samples for the purposes of marketing.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

Generative Adversarial Networks (GAN) have shown great promise in tasks like synthetic image generation, image inpainting, style transfer, and anomaly detection. However, generating discrete data is a challenge. This work presents an adversarial training based correlated discrete data (CDD) generation model. It also details an approach for conditional CDD generation. The results of our approach are presented over two datasets; job-seeking candidates skill set (private dataset) and MNIST (public dataset). From quantitative and qualitative analysis of these results, we show that our model performs better as it leverages inherent correlation in the data, than an existing model that overlooks correlation.

北京阿比特科技有限公司