Cryptography with quantum states exhibits a number of surprising and counterintuitive features. In a 2002 work, Barnum et al. argue that these features imply that digital signatures for quantum states are impossible (Barnum et al., FOCS 2002). In this work, we ask: can all forms of signing quantum data, even in a possibly weak sense, be completely ruled out? We give two results which shed significant light on this basic question. First, we prove an impossibility result for digital signatures for quantum data, which extends the result of Barnum et al. Specifically, we show that no nontrivial combination of correctness and security requirements can be fulfilled, beyond what is achievable simply by measuring the quantum message and then signing the outcome. In other words, only classical signature schemes exist. We then show a positive result: a quantum state can be signed with the same security guarantees as classically, provided that it is also encrypted with the public key of the intended recipient. Following classical nomenclature, we call this notion quantum signcryption. Classically, signcryption is only interesting if it provides superior performance to encypt-then-sign. Quantumly, it is far more interesting: it is the only signing method available. We develop "as-strong-as-classical" security definitions for quantum signcryption and give secure constructions based on post-quantum public-key primitives. Along the way, we show that a natural hybrid method of combining classical and quantum schemes can be used to "upgrade" a secure classical scheme to the fully-quantum setting, in a wide range of cryptographic settings including signcryption, authenticated encryption, and CCA security.
One of the main reasons for query model's prominence in quantum complexity is the presence of concrete lower bounding techniques: polynomial method and adversary method. There have been considerable efforts to not just give lower bounds using these methods but even to compare and relate them. We explore the value of these bounds on quantum query complexity for the class of symmetric functions, arguably one of the most natural and basic set of Boolean functions. We show that the recently introduced measure of spectral sensitivity give the same value as both these bounds (positive adversary and approximate degree) for every total symmetric Boolean function. We also look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. In addition, we study how large certificate complexity and block sensitivity can be as compared to sensitivity (even up to constant factors) for symmetric functions. We show tight separations, i.e., give upper bound on possible separations and construct functions achieving the same.
Advances in quantum computing make Shor's algorithm for factorising numbers ever more tractable. This threatens the security of any cryptographic system which often relies on the difficulty of factorisation. It also threatens methods based on discrete logarithms, such as with the Diffie-Hellman key exchange method. For a cryptographic system to remain secure against a quantum adversary, we need to build methods based on a hard mathematical problem, which are not susceptible to Shor's algorithm and which create Post Quantum Cryptography (PQC). While high-powered computing devices may be able to run these new methods, we need to investigate how well these methods run on limited powered devices. This paper outlines an evaluation framework for PQC within constrained devices, and contributes to the area by providing benchmarks of the front-running algorithms on a popular single-board low-power device.
Generative IA networks, like the Variational Auto-Encoders (VAE), and Generative Adversarial Networks (GANs) produce new objects each time when asked to do so. However, this behavior is unlike that of human artists that change their style as times go by and seldom return to the initial point. We investigate a situation where VAEs are requested to sample from a probability measure described by some empirical set. Based on recent works on Radon-Sobolev statistical distances, we propose a numerical paradigm, to be used in conjunction with a generative algorithm, that satisfies the two following requirements: the objects created do not repeat and evolve to fill the entire target probability measure.
A locally testable code is an error-correcting code that admits very efficient probabilistic tests of membership. Tensor codes provide a simple family of combinatorial constructions of locally testable codes that generalize the family of Reed-Muller codes. The natural test for tensor codes, the axis-parallel line vs. point test, plays an essential role in constructions of probabilistically checkable proofs. We analyze the axis-parallel line vs. point test as a two-prover game and show that the test is sound against quantum provers sharing entanglement. Our result implies the quantum-soundness of the low individual degree test, which is an essential component of the MIP* = RE theorem. Our proof also generalizes to the infinite-dimensional commuting-operator model of quantum provers.
We revisit the classical online portfolio selection problem. It is widely assumed that a trade-off between computational complexity and regret is unavoidable, with Cover's Universal Portfolios algorithm, SOFT-BAYES and ADA-BARRONS currently constituting its state-of-the-art Pareto frontier. In this paper, we present the first efficient algorithm, BISONS, that obtains polylogarithmic regret with memory and per-step running time requirements that are polynomial in the dimension, displacing ADA-BARRONS from the Pareto frontier. Additionally, we resolve a COLT 2020 open problem by showing that a certain Follow-The-Regularized-Leader algorithm with log-barrier regularization suffers an exponentially larger dependence on the dimension than previously conjectured. Thus, we rule out this algorithm as a candidate for the Pareto frontier. We also extend our algorithm and analysis to a more general problem than online portfolio selection, viz. online learning of quantum states with log loss. This algorithm, called SCHRODINGER'S BISONS, is the first efficient algorithm with polylogarithmic regret for this more general problem.
Models defined by moment conditions are at the center of structural econometric estimation, but economic theory is mostly agnostic about moment selection. While a large pool of valid moments can potentially improve estimation efficiency, in the meantime a few invalid ones may undermine consistency. This paper investigates the empirical likelihood estimation of these moment-defined models in high-dimensional settings. We propose a penalized empirical likelihood (PEL) estimation and establish its oracle property with consistent detection of invalid moments. The PEL estimator is asymptotically normally distributed, and a projected PEL procedure further eliminates its asymptotic bias and provides more accurate normal approximation to the finite sample behavior. Simulation exercises demonstrate excellent numerical performance of these methods in estimation and inference.
The ongoing NIST standardization process has shown that Proof of Knowledge (PoK) based signatures have become an important type of possible post-quantum signatures. Regarding code-based cryptography, the original approach for PoK based signatures is the Stern protocol which allows to prove the knowledge of a small weight vector solving a given instance of the Syndrome Decoding (SD) problem over F2. It features a soundness error equal to 2/3. This protocol was improved a few years later by V\'eron who proposed a variation of the scheme based on the General Syndrome Decoding (GSD) problem which leads to better results in term of communication. A few years later, the AGS protocol introduced a variation of the V\'eron protocol based on Quasi-Cyclic (QC) matrices. The AGS protocol permits to obtain an asymptotic soundness error of 1/2 and an improvement in term of communications. In the present paper, we introduce the Quasi-Cyclic Stern PoK which constitutes an adaptation of the AGS scheme in a SD context, as well as several new optimizations for code-based PoK. Our main optimization on the size of the signature can't be applied to GSD based protocols such as AGS and therefore motivated the design of our new protocol. In addition, we also provide a special soundness proof that is compatible with the use of the Fiat-Shamir transform for 5-round protocols. This approach is valid for our protocol but also for the AGS protocol which was lacking such a proof. We compare our results with existing signatures including the recent code-based signatures based on PoK leveraging the MPC in the head paradigm. In practice, our new protocol is as fast as AGS while reducing its associated signature length by 20%. As a consequence, it constitutes an interesting trade-off between signature length and execution time for the design of a code-based signature relying only on the difficulty of the SD problem.
We show that Gottesman's semantics (GROUP22, 1998) for Clifford circuits based on the Heisenberg representation can be treated as a type system that can efficiently characterize a common subset of quantum programs. Our applications include (i) certifying whether auxiliary qubits can be safely disposed of, (ii) determining if a system is separable across a given bi-partition, (iii) checking the transversality of a gate with respect to a given stabilizer code, and (iv) typing post-measurement states for computational basis measurements. Further, this type system is extended to accommodate universal quantum computing by deriving types for the $T$-gate, multiply-controlled unitaries such as the Toffoli gate, and some gate injection circuits that use associated magic states. These types allow us to prove a lower bound on the number of $T$ gates necessary to perform a multiply-controlled $Z$ gate.
When we are faced with challenging image classification tasks, we often explain our reasoning by dissecting the image, and pointing out prototypical aspects of one class or another. The mounting evidence for each of the classes helps us make our final decision. In this work, we introduce a deep network architecture that reasons in a similar way: the network dissects the image by finding prototypical parts, and combines evidence from the prototypes to make a final classification. The model thus reasons in a way that is qualitatively similar to the way ornithologists, physicians, geologists, architects, and others would explain to people on how to solve challenging image classification tasks. The network uses only image-level labels for training, meaning that there are no labels for parts of images. We demonstrate our method on the CUB-200-2011 dataset and the CBIS-DDSM dataset. Our experiments show that our interpretable network can achieve comparable accuracy with its analogous standard non-interpretable counterpart as well as other interpretable deep models.
Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.