Automatic speech recognition (ASR) has gained remarkable successes thanks to recent advances of deep learning, but it usually degrades significantly under real-world noisy conditions. Recent works introduce speech enhancement (SE) as front-end to improve speech quality, which is proved effective but may not be optimal for downstream ASR due to speech distortion problem. Based on that, latest works combine SE and currently popular self-supervised learning (SSL) to alleviate distortion and improve noise robustness. Despite the effectiveness, the speech distortion caused by conventional SE still cannot be cleared out. In this paper, we propose a self-supervised framework named Wav2code to implement a feature-level SE with reduced distortions for noise-robust ASR. First, in pre-training stage the clean speech representations from SSL model are sent to lookup a discrete codebook via nearest-neighbor feature matching, the resulted code sequence are then exploited to reconstruct the original clean representations, in order to store them in codebook as prior. Second, during finetuning we propose a Transformer-based code predictor to accurately predict clean codes by modeling the global dependency of input noisy representations, which enables discovery and restoration of high-quality clean representations with reduced distortions. Furthermore, we propose an interactive feature fusion network to combine original noisy and the restored clean representations to consider both fidelity and quality, resulting in more informative features for downstream ASR. Finally, experiments on both synthetic and real noisy datasets demonstrate that Wav2code can solve the speech distortion and improve ASR performance under various noisy conditions, resulting in stronger robustness.
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML) workflows, aiding the research of new ML algorithms, and contributing to the democratization of ML by making it accessible to a broader audience. Over the past decade, commendable achievements in AutoML have primarily focused on optimizing predictive performance. This focused progress, while substantial, raises questions about how well AutoML has met its broader, original goals. In this position paper, we argue that a key to unlocking AutoML's full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems, including their diverse roles, expectations, and expertise. We envision a more human-centered approach in future AutoML research, promoting the collaborative design of ML systems that tightly integrates the complementary strengths of human expertise and AutoML methodologies.
Classic reinforcement learning (RL) frequently confronts challenges in tasks involving delays, which cause a mismatch between received observations and subsequent actions, thereby deviating from the Markov assumption. Existing methods usually tackle this issue with end-to-end solutions using state augmentation. However, these black-box approaches often involve incomprehensible processes and redundant information in the information states, causing instability and potentially undermining the overall performance. To alleviate the delay challenges in RL, we propose $\textbf{DEER (Delay-resilient Encoder-Enhanced RL)}$, a framework designed to effectively enhance the interpretability and address the random delay issues. DEER employs a pretrained encoder to map delayed states, along with their variable-length past action sequences resulting from different delays, into hidden states, which is trained on delay-free environment datasets. In a variety of delayed scenarios, the trained encoder can seamlessly integrate with standard RL algorithms without requiring additional modifications and enhance the delay-solving capability by simply adapting the input dimension of the original algorithms. We evaluate DEER through extensive experiments on Gym and Mujoco environments. The results confirm that DEER is superior to state-of-the-art RL algorithms in both constant and random delay settings.
The `Jacobi prior' is an alternative Bayesian method for predictive models. It performs better than well-known methods such as Lasso, Ridge, Elastic Net, and MCMC-based Horse-Shoe Prior, particularly in terms of prediction accuracy and run-time. This method is implemented for Gaussian process classification, adeptly handling a nonlinear decision boundary. The Jacobi prior demonstrates its capability to manage partitioned data across global servers, making it highly useful in distributed computing environments. Additionally, we show that the Jacobi prior is more than a hundred times faster than these methods while maintaining similar predictive accuracy. As the method is both fast and accurate, it is advantageous for organisations looking to reduce their environmental impact and meet ESG standards. To demonstrate the effectiveness of the Jacobi prior, we conducted a detailed simulation study with four experiments focusing on statistical consistency, accuracy, and speed. We also present two empirical studies: the first evaluates credit risk by analysing default probability using data from the U.S. Small Business Administration (SBA), and the second uses the Jacobi prior for classifying stars, quasars, and galaxies in a three-class problem using multinomial logit regression on data from the Sloan Digital Sky Survey. Different filters were used as features in this study. All codes and datasets for this paper are available in the following GitHub repository : //github.com/sourish-cmi/Jacobi-Prior/
Large language models (LLMs) have shown amazing capabilities in knowledge memorization and present. However, when it comes to domain-specific knowledge and downstream tasks like medical, general LLMs are often unable to give precise answers. In addition, when people want LLMs to answer classification questions, they usually go through instruction tuning first, however, LLMs do not always give a direct index of the categorization after instruction tuning. In this paper, we proposed LlamaCare, a fine-tuned medical language model, and Extended Classification Integration(ECI), a module to handle classification problems of LLMs. Our contributions are : (i) We fine-tuned a large language model of medical knowledge with very low carbon emissions and achieved similar performance with ChatGPT by a 24G GPU. (ii) We solved the problem of redundant categorical answers and improved the performance of LLMs by proposing a new module called Extended Classification Integration. (iii) We released our processed data for one-shot and few-shot training for some benchmarks such as PubMedQA and USMLE 1-3 step. Our method achieves a close effect with the state-of-the-art model in benchmarks while costing lower GPU resources compared to LLMs with the same quantity of parameters. Our models, codes, and datasets can be found in //github.com/Stephen-SMJ/LLamaCare
Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at //sites.google.com/view/fightladder/home.
While a number of knowledge graph representation learning (KGRL) methods have been proposed over the past decade, very few theoretical analyses have been conducted on them. In this paper, we present the first PAC-Bayesian generalization bounds for KGRL methods. To analyze a broad class of KGRL models, we propose a generic framework named ReED (Relation-aware Encoder-Decoder), which consists of a relation-aware message passing encoder and a triplet classification decoder. Our ReED framework can express at least 15 different existing KGRL models, including not only graph neural network-based models such as R-GCN and CompGCN but also shallow-architecture models such as RotatE and ANALOGY. Our generalization bounds for the ReED framework provide theoretical grounds for the commonly used tricks in KGRL, e.g., parameter-sharing and weight normalization schemes, and guide desirable design choices for practical KGRL methods. We empirically show that the critical factors in our generalization bounds can explain actual generalization errors on three real-world knowledge graphs.
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms. We identify that existing benchmarks used for research into open-ended learning fall into one of two categories. Either they are too slow for meaningful research to be performed without enormous computational resources, like Crafter, NetHack and Minecraft, or they are not complex enough to pose a significant challenge, like Minigrid and Procgen. To remedy this, we first present Craftax-Classic: a ground-up rewrite of Crafter in JAX that runs up to 250x faster than the Python-native original. A run of PPO using 1 billion environment interactions finishes in under an hour using only a single GPU and averages 90% of the optimal reward. To provide a more compelling challenge we present the main Craftax benchmark, a significant extension of the Crafter mechanics with elements inspired from NetHack. Solving Craftax requires deep exploration, long term planning and memory, as well as continual adaptation to novel situations as more of the world is discovered. We show that existing methods including global and episodic exploration, as well as unsupervised environment design fail to make material progress on the benchmark. We believe that Craftax can for the first time allow researchers to experiment in a complex, open-ended environment with limited computational resources.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.
While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.