Place recognition using SOund Navigation and Ranging (SONAR) images is an important task for simultaneous localization and mapping(SLAM) in underwater environments. This paper proposes a robust and efficient imaging SONAR based place recognition, SONAR context, and loop closure method. Unlike previous methods, our approach encodes geometric information based on the characteristics of raw SONAR measurements without prior knowledge or training. We also design a hierarchical searching procedure for fast retrieval of candidate SONAR frames and apply adaptive shifting and padding to achieve robust matching on rotation and translation changes. In addition, we can derive the initial pose through adaptive shifting and apply it to the iterative closest point (ICP) based loop closure factor. We evaluate the performance of SONAR context in the various underwater sequences such as simulated open water, real water tank, and real underwater environments. The proposed approach shows the robustness and improvements of place recognition on various datasets and evaluation metrics. Supplementary materials are available at //github.com/sparolab/sonar_context.git.
In recent years, the role of image generative models in facial reenactment has been steadily increasing. Such models are usually subject-agnostic and trained on domain-wide datasets. The appearance of the reenacted individual is learned from a single image, and hence, the entire breadth of the individual's appearance is not entirely captured, leading these methods to resort to unfaithful hallucination. Thanks to recent advancements, it is now possible to train a personalized generative model tailored specifically to a given individual. In this paper, we propose a novel method for facial reenactment using a personalized generator. We train the generator using frames from a short, yet varied, self-scan video captured using a simple commodity camera. Images synthesized by the personalized generator are guaranteed to preserve identity. The premise of our work is that the task of reenactment is thus reduced to accurately mimicking head poses and expressions. To this end, we locate the desired frames in the latent space of the personalized generator using carefully designed latent optimization. Through extensive evaluation, we demonstrate state-of-the-art performance for facial reenactment. Furthermore, we show that since our reenactment takes place in a semantic latent space, it can be semantically edited and stylized in post-processing.
This paper investigates the planning and control problems for multi-robot systems under linear temporal logic (LTL) specifications. In contrast to most of existing literature, which presumes a static and known environment, our study focuses on dynamic environments that can have unknown moving obstacles like humans walking through. Depending on whether local communication is allowed between robots, we consider two different online re-planning approaches. When local communication is allowed, we propose a local trajectory generation algorithm for each robot to resolve conflicts that are detected on-line. In the other case, i.e., no communication is allowed, we develop a model predictive controller to reactively avoid potential collisions. In both cases, task satisfaction is guaranteed whenever it is feasible. In addition, we consider the human-in-the-loop scenario where humans may additionally take control of one or multiple robots. We design a mixed initiative controller for each robot to prevent unsafe human behaviors while guarantee the LTL satisfaction. Using our previous developed ROS software package, several experiments are conducted to demonstrate the effectiveness and the applicability of the proposed strategies.
Text-to-SQL aims at generating SQL queries for the given natural language questions and thus helping users to query databases. Prompt learning with large language models (LLMs) has emerged as a recent approach, which designs prompts to lead LLMs to understand the input question and generate the corresponding SQL. However, it faces challenges with strict SQL syntax requirements. Existing work prompts the LLMs with a list of demonstration examples (i.e. question-SQL pairs) to generate SQL, but the fixed prompts can hardly handle the scenario where the semantic gap between the retrieved demonstration and the input question is large. In this paper, we propose a retrieval-augmented prompting method for a LLM-based Text-to-SQL framework, involving sample-aware prompting and a dynamic revision chain. Our approach incorporates sample-aware demonstrations, which include the composition of SQL operators and fine-grained information related to the given question. To retrieve questions sharing similar intents with input questions, we propose two strategies for assisting retrieval. Firstly, we leverage LLMs to simplify the original questions, unifying the syntax and thereby clarifying the users' intentions. To generate executable and accurate SQLs without human intervention, we design a dynamic revision chain which iteratively adapts fine-grained feedback from the previously generated SQL. Experimental results on three Text-to-SQL benchmarks demonstrate the superiority of our method over strong baseline models.
The feedback that users provide through their choices (e.g., clicks, purchases) is one of the most common types of data readily available for training search and recommendation algorithms. However, myopically training systems based on choice data may only improve short-term engagement, but not the long-term sustainability of the platform and the long-term benefits to its users, content providers, and other stakeholders. In this paper, we thus develop a new framework in which decision makers (e.g., platform operators, regulators, users) can express long-term goals for the behavior of the platform (e.g., fairness, revenue distribution, legal requirements). These goals take the form of exposure or impact targets that go well beyond individual sessions, and we provide new control-based algorithms to achieve these goals. In particular, the controllers are designed to achieve the stated long-term goals with minimum impact on short-term engagement. Beyond the principled theoretical derivation of the controllers, we evaluate the algorithms on both synthetic and real-world data. While all controllers perform well, we find that they provide interesting trade-offs in efficiency, robustness, and the ability to plan ahead.
Correcting gradual position drift is a challenge in long-term subsea navigation. Though highly accurate, modern inertial navigation system (INS) estimates will drift over time due to the accumulated effects of sensor noise and biases, even with acoustic aiding from a Doppler velocity log (DVL). The raw sensor measurements and estimation algorithms used by the DVL-aided INS are often proprietary, which restricts the fusion of additional sensors that could bound navigation drift over time. In this letter, the raw sensor measurements and their respective covariances are estimated from the DVL-aided INS output using semidefinite programming tools. The estimated measurements are then augmented with laser-based loop-closure measurements in a batch state estimation framework to correct planar position errors. The heading uncertainty from the DVL-aided INS is also considered in the estimation of the updated positions. The pipeline is tested in simulation and on experimental field data. The proposed methodology reduces the long-term navigation drift by more than 30 times compared to the DVL-aided INS estimate.
Coronary artery segmentation on coronary-computed tomography angiography (CCTA) images is crucial for clinical use. Due to the expertise-required and labor-intensive annotation process, there is a growing demand for the relevant label-efficient learning algorithms. To this end, we propose partial vessels annotation (PVA) based on the challenges of coronary artery segmentation and clinical diagnostic characteristics. Further, we propose a progressive weakly supervised learning framework to achieve accurate segmentation under PVA. First, our proposed framework learns the local features of vessels to propagate the knowledge to unlabeled regions. Subsequently, it learns the global structure by utilizing the propagated knowledge, and corrects the errors introduced in the propagation process. Finally, it leverages the similarity between feature embeddings and the feature prototype to enhance testing outputs. Experiments on clinical data reveals that our proposed framework outperforms the competing methods under PVA (24.29% vessels), and achieves comparable performance in trunk continuity with the baseline model using full annotation (100% vessels).
Due to the robustness in sensing, radar has been highlighted, overcoming harsh weather conditions such as fog and heavy snow. In this paper, we present a novel radar-only place recognition that measures the similarity score by utilizing Radon-transformed sinogram images and cross-correlation in frequency domain. Doing so achieves rigid transform invariance during place recognition, while ignoring the effects of radar multipath and ring noises. In addition, we compute the radar similarity distance using mutable threshold to mitigate variability of the similarity score, and reduce the time complexity of processing a copious radar data with hierarchical retrieval. We demonstrate the matching performance for both intra-session loop-closure detection and global place recognition using a publicly available imaging radar datasets. We verify reliable performance compared to existing stable radar place recognition method. Furthermore, codes for the proposed imaging radar place recognition is released for community.
Network experiments are essential to network-related scientific research (e.g., congestion control, QoS, network topology design, and traffic engineering). However, (re)configuring various topologies on a real testbed is expensive, time-consuming, and error-prone. In this paper, we propose \emph{Software Defined Topology Testbed (SDT)}, a method for constructing a user-defined network topology using a few commodity switches. SDT is low-cost, deployment-friendly, and reconfigurable, which can run multiple sets of experiments under different topologies by simply using different topology configuration files at the controller we designed. We implement a prototype of SDT and conduct numerous experiments. Evaluations show that SDT only introduces at most 2\% extra overhead than full testbeds on multi-hop latency and is far more efficient than software simulators (reducing the evaluation time by up to 2899x). SDT is more cost-effective and scalable than existing Topology Projection (TP) solutions. Further experiments show that SDT can support various network research experiments at a low cost on topics including but not limited to topology design, congestion control, and traffic engineering.
Current research in the computer vision field mainly focuses on improving Deep Learning (DL) correctness and inference time performance. However, there is still little work on the huge carbon footprint that has training DL models. This study aims to analyze the impact of the model architecture and training environment when training greener computer vision models. We divide this goal into two research questions. First, we analyze the effects of model architecture on achieving greener models while keeping correctness at optimal levels. Second, we study the influence of the training environment on producing greener models. To investigate these relationships, we collect multiple metrics related to energy efficiency and model correctness during the models' training. Then, we outline the trade-offs between the measured energy efficiency and the models' correctness regarding model architecture, and their relationship with the training environment. We conduct this research in the context of a computer vision system for image classification. In conclusion, we show that selecting the proper model architecture and training environment can reduce energy consumption dramatically (up to 98.83\%) at the cost of negligible decreases in correctness. Also, we find evidence that GPUs should scale with the models' computational complexity for better energy efficiency.
While federated learning (FL) promises to preserve privacy, recent works in the image and text domains have shown that training updates leak private client data. However, most high-stakes applications of FL (e.g., in healthcare and finance) use tabular data, where the risk of data leakage has not yet been explored. A successful attack for tabular data must address two key challenges unique to the domain: (i) obtaining a solution to a high-variance mixed discrete-continuous optimization problem, and (ii) enabling human assessment of the reconstruction as unlike for image and text data, direct human inspection is not possible. In this work we address these challenges and propose TabLeak, the first comprehensive reconstruction attack on tabular data. TabLeak is based on two key contributions: (i) a method which leverages a softmax relaxation and pooled ensembling to solve the optimization problem, and (ii) an entropy-based uncertainty quantification scheme to enable human assessment. We evaluate TabLeak on four tabular datasets for both FedSGD and FedAvg training protocols, and show that it successfully breaks several settings previously deemed safe. For instance, we extract large subsets of private data at >90% accuracy even at the large batch size of 128. Our findings demonstrate that current high-stakes tabular FL is excessively vulnerable to leakage attacks.