This paper is motivated by recent developments in the linear bandit literature, which have revealed a discrepancy between the promising empirical performance of algorithms such as Thompson sampling and Greedy, when compared to their pessimistic theoretical regret bounds. The challenge arises from the fact that while these algorithms may perform poorly in certain problem instances, they generally excel in typical instances. To address this, we propose a new data-driven technique that tracks the geometry of the uncertainty ellipsoid, enabling us to establish an instance-dependent frequentist regret bound for a broad class of algorithms, including Greedy, OFUL, and Thompson sampling. This result empowers us to identify and ``course-correct" instances in which the base algorithms perform poorly. The course-corrected algorithms achieve the minimax optimal regret of order $\tilde{\mathcal{O}}(d\sqrt{T})$, while retaining most of the desirable properties of the base algorithms. We present simulation results to validate our findings and compare the performance of our algorithms with the baselines.
This paper proposes an interpretation of RLAIF as Bayesian inference by introducing distilled Self-Critique (dSC), which refines the outputs of a LLM through a Gibbs sampler that is later distilled into a fine-tuned model. Only requiring synthetic data, dSC is exercised in experiments regarding safety, sentiment, and privacy control, showing it can be a viable and cheap alternative to align LLMs. Code released at \url{//github.com/vicgalle/distilled-self-critique}.
This paper proposes a weakly-supervised machine learning-based approach aiming at a tool to alert patients about possible respiratory diseases. Various types of pathologies may affect the respiratory system, potentially leading to severe diseases and, in certain cases, death. In general, effective prevention practices are considered as major actors towards the improvement of the patient's health condition. The proposed method strives to realize an easily accessible tool for the automatic diagnosis of respiratory diseases. Specifically, the method leverages Variational Autoencoder architectures permitting the usage of training pipelines of limited complexity and relatively small-sized datasets. Importantly, it offers an accuracy of 57 %, which is in line with the existing strongly-supervised approaches.
As discussions around 6G begin, it is important to carefully quantify the spectral efficiency gains actually realized by deployed 5G networks as compared to 4G through various enhancements such as higher modulation, beamforming, and MIMO. This will inform the design of future cellular systems, especially in the mid-bands, which provide a good balance between bandwidth and propagation. Similar to 4G, 5G also utilizes low-band (<1 GHz) and mid-band spectrum (1 to 6 GHz), and hence comparing the performance of 4G and 5G in these bands will provide insights into how further improvements can be attained. In this work, we address a crucial question: is the performance boost in 5G compared to 4G primarily a result of increased bandwidth, or do the other enhancements play significant roles, and if so, under what circumstances? Hence, we conduct city-wide measurements of 4G and 5G cellular networks deployed in low- and mid-bands in Chicago and Minneapolis, and carefully quantify the contributions of different aspects of 5G advancements to its improved throughput performance. Our analyses show that (i) compared to 4G, the throughput improvement in 5G today is mainly influenced by the wider channel bandwidth, both from single channels and channel aggregation, (ii) in addition to wider channels, improved 5G throughput requires better signal conditions, which can be delivered by denser deployment and/or use of beamforming in mid-bands, (iii) the channel rank in real-world environments rarely supports the full 4 layers of 4x4 MIMO and (iv) advanced features such as MU-MIMO and higher order modulation such as 1024-QAM have yet to be widely deployed. These observations and conclusions lead one to consider designing the next generation of cellular systems to have wider channels, perhaps with improved channel aggregation, dense deployment with more beams.
Magnetic resonance imaging (MRI) is commonly used for brain tumor segmentation, which is critical for patient evaluation and treatment planning. To reduce the labor and expertise required for labeling, weakly-supervised semantic segmentation (WSSS) methods with class activation mapping (CAM) have been proposed. However, existing CAM methods suffer from low resolution due to strided convolution and pooling layers, resulting in inaccurate predictions. In this study, we propose a novel CAM method, Attentive Multiple-Exit CAM (AME-CAM), that extracts activation maps from multiple resolutions to hierarchically aggregate and improve prediction accuracy. We evaluate our method on the BraTS 2021 dataset and show that it outperforms state-of-the-art methods.
This paper aims to define, quantify, and analyze the feature complexity that is learned by a DNN. We propose a generic definition for the feature complexity. Given the feature of a certain layer in the DNN, our method disentangles feature components of different complexity orders from the feature. We further design a set of metrics to evaluate the reliability, the effectiveness, and the significance of over-fitting of these feature components. Furthermore, we successfully discover a close relationship between the feature complexity and the performance of DNNs. As a generic mathematical tool, the feature complexity and the proposed metrics can also be used to analyze the success of network compression and knowledge distillation.
Motivated by Tucker tensor decomposition, this paper imposes low-rank structures to the column and row spaces of coefficient matrices in a multivariate infinite-order vector autoregression (VAR), which leads to a supervised factor model with two factor modelings being conducted to responses and predictors simultaneously. Interestingly, the stationarity condition implies an intrinsic weak group sparsity mechanism of infinite-order VAR, and hence a rank-constrained group Lasso estimation is considered for high-dimensional linear time series. Its non-asymptotic properties are discussed thoughtfully by balancing the estimation, approximation and truncation errors. Moreover, an alternating gradient descent algorithm with thresholding is designed to search for high-dimensional estimates, and its theoretical justifications, including statistical and convergence analysis, are also provided. Theoretical and computational properties of the proposed methodology are verified by simulation experiments, and the advantages over existing methods are demonstrated by two real examples.
Generalized from the concept of consensus, this paper considers a group of edge agreements, i.e. constraints defined for neighboring agents, in which each pair of neighboring agents is required to satisfy one edge agreement constraint. Edge agreements are defined locally to allow more flexibility than a global consensus. This work formulates a multi-agent optimization problem under edge agreements and proposes a continuous-time distributed algorithm to solve it. Both analytical proof and numerical examples are provided to validate the effectiveness of the proposed algorithm.
Our work presents a novel approach to shape optimization, with the twofold objective to improve the efficiency of global optimization algorithms while promoting the generation of high-quality designs during the optimization process free of geometrical anomalies. This is accomplished by reducing the number of the original design variables defining a new reduced subspace where the geometrical variance is maximized and modeling the underlying generative process of the data via probabilistic linear latent variable models such as factor analysis and probabilistic principal component analysis. We show that the data follows approximately a Gaussian distribution when the shape modification method is linear and the design variables are sampled uniformly at random, due to the direct application of the central limit theorem. The degree of anomalousness is measured in terms of Mahalanobis distance, and the paper demonstrates that abnormal designs tend to exhibit a high value of this metric. This enables the definition of a new optimization model where anomalous geometries are penalized and consequently avoided during the optimization loop. The procedure is demonstrated for hull shape optimization of the DTMB 5415 model, extensively used as an international benchmark for shape optimization problems. The global optimization routine is carried out using Bayesian optimization and the DIRECT algorithm. From the numerical results, the new framework improves the convergence of global optimization algorithms, while only designs with high-quality geometrical features are generated through the optimization routine thereby avoiding the wastage of precious computationally expensive simulations.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.