亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating weights in the synthetic control method, typically resulting in sparse weights where only a few control units have non-zero weights, involves an optimization procedure that simultaneously selects and aligns control units to closely match the treated unit. However, this simultaneous selection and alignment of control units may lead to a loss of efficiency. Another concern arising from the aforementioned procedure is its susceptibility to under-fitting due to imperfect pre-treatment fit. It is not uncommon for the linear combination, using nonnegative weights, of pre-treatment period outcomes for the control units to inadequately approximate the pre-treatment outcomes for the treated unit. To address both of these issues, this paper proposes a simple and effective method called Synthetic Regressing Control (SRC). The SRC method begins by performing the univariate linear regression to appropriately align the pre-treatment periods of the control units with the treated unit. Subsequently, a SRC estimator is obtained by synthesizing (taking a weighted average) the fitted controls. To determine the weights in the synthesis procedure, we propose an approach that utilizes a criterion of unbiased risk estimator. Theoretically, we show that the synthesis way is asymptotically optimal in the sense of achieving the lowest possible squared error. Extensive numerical experiments highlight the advantages of the SRC method.

相關內容

Most work on the formal verification of neural networks has focused on bounding the set of outputs that correspond to a given set of inputs (for example, bounded perturbations of a nominal input). However, many use cases of neural network verification require solving the inverse problem, or over-approximating the set of inputs that lead to certain outputs. We present the INVPROP algorithm for verifying properties over the preimage of a linearly constrained output set, which can be combined with branch-and-bound to increase precision. Contrary to other approaches, our efficient algorithm is GPU-accelerated and does not require a linear programming solver. We demonstrate our algorithm for identifying safe control regions for a dynamical system via backward reachability analysis, verifying adversarial robustness, and detecting out-of-distribution inputs to a neural network. Our results show that in certain settings, we find over-approximations over 2500x tighter than prior work while being 2.5x faster. By strengthening robustness verification with output constraints, we consistently verify more properties than the previous state-of-the-art on multiple benchmarks, including a large model with 167k neurons in VNN-COMP 2023. Our algorithm has been incorporated into the $\alpha,\!\beta$-CROWN verifier, available at //abcrown.org.

Developing deep learning models that effectively learn object-centric representations, akin to human cognition, remains a challenging task. Existing approaches facilitate object discovery by representing objects as fixed-size vectors, called ``slots'' or ``object files''. While these approaches have shown promise in certain scenarios, they still exhibit certain limitations. First, they rely on architectural priors which can be unreliable and usually require meticulous engineering to identify the correct objects. Second, there has been a notable gap in investigating the practical utility of these representations in downstream tasks. To address the first limitation, we introduce a method that explicitly optimizes the constraint that each object in a scene should be associated with a distinct slot. We formalize this constraint by introducing consistency objectives which are cyclic in nature. By integrating these consistency objectives into various existing slot-based object-centric methods, we showcase substantial improvements in object-discovery performance. These enhancements consistently hold true across both synthetic and real-world scenes, underscoring the effectiveness and adaptability of the proposed approach. To tackle the second limitation, we apply the learned object-centric representations from the proposed method to two downstream reinforcement learning tasks, demonstrating considerable performance enhancements compared to conventional slot-based and monolithic representation learning methods. Our results suggest that the proposed approach not only improves object discovery, but also provides richer features for downstream tasks.

The increasing use of stochastic models for describing complex phenomena warrants surrogate models that capture the reference model characteristics at a fraction of the computational cost, foregoing potentially expensive Monte Carlo simulation. The predominant approach of fitting a large neural network and then pruning it to a reduced size has commonly neglected shortcomings. The produced surrogate models often will not capture the sensitivities and uncertainties inherent in the original model. In particular, (higher-order) derivative information of such surrogates could differ drastically. Given a large enough network, we expect this derivative information to match. However, the pruned model will almost certainly not share this behavior. In this paper, we propose to find surrogate models by using sensitivity information throughout the learning and pruning process. We build on work using Interval Adjoint Significance Analysis for pruning and combine it with the recent advancements in Sobolev Training to accurately model the original sensitivity information in the pruned neural network based surrogate model. We experimentally underpin the method on an example of pricing a multidimensional Basket option modelled through a stochastic differential equation with Brownian motion. The proposed method is, however, not limited to the domain of quantitative finance, which was chosen as a case study for intuitive interpretations of the sensitivities. It serves as a foundation for building further surrogate modelling techniques considering sensitivity information.

Negative control variables are sometimes used in non-experimental studies to detect the presence of confounding by hidden factors. A negative control outcome (NCO) is an outcome that is influenced by unobserved confounders of the exposure effects on the outcome in view, but is not causally impacted by the exposure. Tchetgen Tchetgen (2013) introduced the Control Outcome Calibration Approach (COCA) as a formal NCO counterfactual method to detect and correct for residual confounding bias. For identification, COCA treats the NCO as an error-prone proxy of the treatment-free counterfactual outcome of interest, and involves regressing the NCO on the treatment-free counterfactual, together with a rank-preserving structural model which assumes a constant individual-level causal effect. In this work, we establish nonparametric COCA identification for the average causal effect for the treated, without requiring rank-preservation, therefore accommodating unrestricted effect heterogeneity across units. This nonparametric identification result has important practical implications, as it provides single proxy confounding control, in contrast to recently proposed proximal causal inference, which relies for identification on a pair of confounding proxies. For COCA estimation we propose three separate strategies: (i) an extended propensity score approach, (ii) an outcome bridge function approach, and (iii) a doubly-robust approach. Finally, we illustrate the proposed methods in an application evaluating the causal impact of a Zika virus outbreak on birth rate in Brazil.

The fidelity of relighting is bounded by both geometry and appearance representations. For geometry, both mesh and volumetric approaches have difficulty modeling intricate structures like 3D hair geometry. For appearance, existing relighting models are limited in fidelity and often too slow to render in real-time with high-resolution continuous environments. In this work, we present Relightable Gaussian Codec Avatars, a method to build high-fidelity relightable head avatars that can be animated to generate novel expressions. Our geometry model based on 3D Gaussians can capture 3D-consistent sub-millimeter details such as hair strands and pores on dynamic face sequences. To support diverse materials of human heads such as the eyes, skin, and hair in a unified manner, we present a novel relightable appearance model based on learnable radiance transfer. Together with global illumination-aware spherical harmonics for the diffuse components, we achieve real-time relighting with spatially all-frequency reflections using spherical Gaussians. This appearance model can be efficiently relit under both point light and continuous illumination. We further improve the fidelity of eye reflections and enable explicit gaze control by introducing relightable explicit eye models. Our method outperforms existing approaches without compromising real-time performance. We also demonstrate real-time relighting of avatars on a tethered consumer VR headset, showcasing the efficiency and fidelity of our avatars.

Order is one of the main instruments to measure the relationship between objects in (empirical) data. However, compared to methods that use numerical properties of objects, the amount of ordinal methods developed is rather small. One reason for this is the limited availability of computational resources in the last century that would have been required for ordinal computations. Another reason -- particularly important for this line of research -- is that order-based methods are often seen as too mathematically rigorous for applying them to real-world data. In this paper, we will therefore discuss different means for measuring and 'calculating' with ordinal structures -- a specific class of directed graphs -- and show how to infer knowledge from them. Our aim is to establish Ordinal Data Science as a fundamentally new research agenda. Besides cross-fertilization with other cornerstone machine learning and knowledge representation methods, a broad range of disciplines will benefit from this endeavor, including, psychology, sociology, economics, web science, knowledge engineering, scientometrics.

The increasing use of stochastic models for describing complex phenomena warrants surrogate models that capture the reference model characteristics at a fraction of the computational cost, foregoing potentially expensive Monte Carlo simulation. The predominant approach of fitting a large neural network and then pruning it to a reduced size has commonly neglected shortcomings. The produced surrogate models often will not capture the sensitivities and uncertainties inherent in the original model. In particular, (higher-order) derivative information of such surrogates could differ drastically. Given a large enough network, we expect this derivative information to match. However, the pruned model will almost certainly not share this behavior. In this paper, we propose to find surrogate models by using sensitivity information throughout the learning and pruning process. We build on work using Interval Adjoint Significance Analysis for pruning and combine it with the recent advancements in Sobolev Training to accurately model the original sensitivity information in the pruned neural network based surrogate model. We experimentally underpin the method on an example of pricing a multidimensional Basket option modelled through a stochastic differential equation with Brownian motion. The proposed method is, however, not limited to the domain of quantitative finance, which was chosen as a case study for intuitive interpretations of the sensitivities. It serves as a foundation for building further surrogate modelling techniques considering sensitivity information.

Function merging is a pivotal technique for reducing code size by combining identical or similar functions into a single function. While prior research has extensively explored this technique, it has not been assessed in conjunction with function outlining and linker's identical code folding, despite substantial common ground. The traditional approaches necessitate the complete intermediate representation to compare functions. Consequently, none of these approaches offer a scalable solution compatible with separate compilations while achieving global function merging, which is critical for large app development. In this paper, we introduce our global function merger, leveraging global merge information from previous code generation runs to optimistically create merging instances within each module context independently. Notably, our approach remains sound even when intermediate representations change, making it well-suited for distributed build environments. We present a comprehensive code generation framework that can run both the state-of-the-art global function outliner and our global function merger. These components complement each other, resulting in a positive impact on code size reduction. Our evaluation demonstrates that when integrating the global function merger with a state-of-the-art global function outliner that is fully optimized with ThinLTO, a further reduction of up to 3.5% in code size can be attained. This is in addition to the initial average reduction of 17.3% achieved through global function outlining for real-world iOS apps, all with minimal extra build time.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司