The linear varying coefficient models posits a linear relationship between an outcome and covariates in which the covariate effects are modeled as functions of additional effect modifiers. Despite a long history of study and use in statistics and econometrics, state-of-the-art varying coefficient modeling methods cannot accommodate multivariate effect modifiers without imposing restrictive functional form assumptions or involving computationally intensive hyperparameter tuning. In response, we introduce VCBART, which flexibly estimates the covariate effect in a varying coefficient model using Bayesian Additive Regression Trees. With simple default settings, VCBART outperforms existing varying coefficient methods in terms of covariate effect estimation, uncertainty quantification, and outcome prediction. We illustrate the utility of VCBART with two case studies: one examining how the association between later-life cognition and measures of socioeconomic position vary with respect to age and socio-demographics and another estimating how temporal trends in urban crime vary at the neighborhood level. An R package implementing VCBART is available at //github.com/skdeshpande91/VCBART
Optimization under the symplecticity constraint is an approach for solving various problems in quantum physics and scientific computing. Building on the results that this optimization problem can be transformed into an unconstrained problem on the symplectic Stiefel manifold, we construct geometric ingredients for Riemannian optimization with a new family of Riemannian metrics called tractable metrics and develop Riemannian Newton schemes. The newly obtained ingredients do not only generalize several existing results but also provide us with freedom to choose a suitable metric for each problem. To the best of our knowledge, this is the first try to develop the explicit second-order geometry and Newton's methods on the symplectic Stiefel manifold. For the Riemannian Newton method, we first consider novel operator-valued formulas for computing the Riemannian Hessian of a~cost function, which further allows the manifold to be endowed with a weighted Euclidean metric that can provide a preconditioning effect. We then solve the resulting Newton equation, as the central step of Newton's methods, directly via transforming it into a~saddle point problem followed by vectorization, or iteratively via applying any matrix-free iterative method either to the operator Newton equation or its saddle point formulation. Finally, we propose a hybrid Riemannian Newton optimization algorithm that enjoys both global convergence and quadratic/superlinear local convergence at the final stage. Various numerical experiments are presented to validate the proposed methods.
We consider weak convergence of one-step schemes for solving stochastic differential equations (SDEs) with one-sided Lipschitz conditions. It is known that the super-linear coefficients may lead to a blowup of moments of solutions and their numerical solutions. When solutions to SDEs have all finite moments, weak convergence of numerical schemes has been investigated in [Wang et al (2023), Weak error analysis for strong approximation schemes of SDEs with super-linear coefficients, IMA Journal numerical analysis]. Some modified Euler schemes have been analyzed for weak convergence. In this work, we present a family of explicit schemes of first and second-order weak convergence based on classical schemes for SDEs. We explore the effects of limited moments on these schemes. We provide a systematic but simple way to establish weak convergence orders for schemes based on approximations/modifications of drift and diffusion coefficients. We present several numerical examples of these schemes and show their weak convergence orders.
Cellular scale decision making is modulated by the dynamics of signalling molecules and their diffusive trajectories from a source to small absorbing sites on the cellular surface. Diffusive capture problems are computationally challenging due to the complex geometry and the applied boundary conditions together with intrinsically long transients that occur before a particle is captured. This paper reports on a particle-based Kinetic Monte Carlo (KMC) method that provides rapid accurate simulation of arrival statistics for (i) a half-space bounded by a surface with a finite collection of absorbing traps and (ii) the domain exterior to a convex cell again with absorbing traps. We validate our method by replicating classical results and in addition, newly developed boundary homogenization theories and matched asymptotic expansions on capture rates. In the case of non-spherical domains, we describe a new shielding effect in which geometry can play a role in sharpening cellular estimates on the directionality of diffusive sources.
We study the numerical approximation of advection-diffusion equations with highly oscillatory coefficients and possibly dominant advection terms by means of the Multiscale Finite Element Method. The latter method is a now classical, finite element type method that performs a Galerkin approximation on a problem-dependent basis set, itself pre-computed in an offline stage. The approach is implemented here using basis functions that locally resolve both the diffusion and the advection terms. Variants with additional bubble functions and possibly weak inter-element continuity are proposed. Some theoretical arguments and a comprehensive set of numerical experiments allow to investigate and compare the stability and the accuracy of the approaches. The best approach constructed is shown to be adequate for both the diffusion- and advection-dominated regimes, and does not rely on an auxiliary stabilization parameter that would have to be properly adjusted.
Making inference with spatial extremal dependence models can be computationally burdensome since they involve intractable and/or censored likelihoods. Building on recent advances in likelihood-free inference with neural Bayes estimators, that is, neural networks that approximate Bayes estimators, we develop highly efficient estimators for censored peaks-over-threshold models that {use data augmentation techniques} to encode censoring information in the neural network {input}. Our new method provides a paradigm shift that challenges traditional censored likelihood-based inference methods for spatial extremal dependence models. Our simulation studies highlight significant gains in both computational and statistical efficiency, relative to competing likelihood-based approaches, when applying our novel estimators to make inference with popular extremal dependence models, such as max-stable, $r$-Pareto, and random scale mixture process models. We also illustrate that it is possible to train a single neural Bayes estimator for a general censoring level, precluding the need to retrain the network when the censoring level is changed. We illustrate the efficacy of our estimators by making fast inference on hundreds-of-thousands of high-dimensional spatial extremal dependence models to assess extreme particulate matter 2.5 microns or less in diameter (${\rm PM}_{2.5}$) concentration over the whole of Saudi Arabia.
The approximation properties of infinitely wide shallow neural networks heavily depend on the choice of the activation function. To understand this influence, we study embeddings between Barron spaces with different activation functions. These embeddings are proven by providing push-forward maps on the measures $\mu$ used to represent functions $f$. An activation function of particular interest is the rectified power unit ($\operatorname{RePU}$) given by $\operatorname{RePU}_s(x)=\max(0,x)^s$. For many commonly used activation functions, the well-known Taylor remainder theorem can be used to construct a push-forward map, which allows us to prove the embedding of the associated Barron space into a Barron space with a $\operatorname{RePU}$ as activation function. Moreover, the Barron spaces associated with the $\operatorname{RePU}_s$ have a hierarchical structure similar to the Sobolev spaces $H^m$.
Two numerical schemes are proposed and investigated for the Yang--Mills equations, which can be seen as a nonlinear generalisation of the Maxwell equations set on Lie algebra-valued functions, with similarities to certain formulations of General Relativity. Both schemes are built on the Discrete de Rham (DDR) method, and inherit from its main features: an arbitrary order of accuracy, and applicability to generic polyhedral meshes. They make use of the complex property of the DDR, together with a Lagrange-multiplier approach, to preserve, at the discrete level, a nonlinear constraint associated with the Yang--Mills equations. We also show that the schemes satisfy a discrete energy dissipation (the dissipation coming solely from the implicit time stepping). Issues around the practical implementations of the schemes are discussed; in particular, the assembly of the local contributions in a way that minimises the price we pay in dealing with nonlinear terms, in conjunction with the tensorisation coming from the Lie algebra. Numerical tests are provided using a manufactured solution, and show that both schemes display a convergence in $L^2$-norm of the potential and electrical fields in $\mathcal O(h^{k+1})$ (provided that the time step is of that order), where $k$ is the polynomial degree chosen for the DDR complex. We also numerically demonstrate the preservation of the constraint.
PEPit is a Python package aiming at simplifying the access to worst-case analyses of a large family of first-order optimization methods possibly involving gradient, projection, proximal, or linear optimization oracles, along with their approximate, or Bregman variants. In short, PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods. The key underlying idea is to cast the problem of performing a worst-case analysis, often referred to as a performance estimation problem (PEP), as a semidefinite program (SDP) which can be solved numerically. To do that, the package users are only required to write first-order methods nearly as they would have implemented them. The package then takes care of the SDP modeling parts, and the worst-case analysis is performed numerically via a standard solver.
AI for partial differential equations (PDEs) has garnered significant attention, particularly with the emergence of Physics-informed neural networks (PINNs). The recent advent of Kolmogorov-Arnold Network (KAN) indicates that there is potential to revisit and enhance the previously MLP-based PINNs. Compared to MLPs, KANs offer interpretability and require fewer parameters. PDEs can be described in various forms, such as strong form, energy form, and inverse form. While mathematically equivalent, these forms are not computationally equivalent, making the exploration of different PDE formulations significant in computational physics. Thus, we propose different PDE forms based on KAN instead of MLP, termed Kolmogorov-Arnold-Informed Neural Network (KINN). We systematically compare MLP and KAN in various numerical examples of PDEs, including multi-scale, singularity, stress concentration, nonlinear hyperelasticity, heterogeneous, and complex geometry problems. Our results demonstrate that KINN significantly outperforms MLP in terms of accuracy and convergence speed for numerous PDEs in computational solid mechanics, except for the complex geometry problem. This highlights KINN's potential for more efficient and accurate PDE solutions in AI for PDEs.
We use Stein characterisations to derive new moment-type estimators for the parameters of several truncated multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the truncated multivariate normal distribution and truncated products of independent univariate distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator (MLE). The quality of these estimators is assessed through competitive simulation studies, in which we compare their behaviour to the performance of the MLE and the score matching approach.