亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tracking multiple objects through time is an important part of an intelligent transportation system. Random finite set (RFS)-based filters are one of the emerging techniques for tracking multiple objects. In multi-object tracking (MOT), a common assumption is that each object is moving independent of its surroundings. But in many real-world applications, target objects interact with one another and the environment. Such interactions, when considered for tracking, are usually modeled by an interactive motion model which is application specific. In this paper, we present a novel approach to incorporate target interactions within the prediction step of an RFS-based multi-target filter, i.e. labeled multi-Bernoulli (LMB) filter. The method has been developed for two practical applications of tracking a coordinated swarm and vehicles. The method has been tested for a complex vehicle tracking dataset and compared with the LMB filter through the OSPA and OSPA$^{(2)}$ metrics. The results demonstrate that the proposed interaction-aware method depicts considerable performance enhancement over the LMB filter in terms of the selected metrics.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 基學習器 · 小樣本學習 · · Analysis ·
2022 年 6 月 9 日

The base learners and labeled samples (shots) in an ensemble few-shot classifier greatly affect the model performance. When the performance is not satisfactory, it is usually difficult to understand the underlying causes and make improvements. To tackle this issue, we propose a visual analysis method, FSLDiagnotor. Given a set of base learners and a collection of samples with a few shots, we consider two problems: 1) finding a subset of base learners that well predict the sample collections; and 2) replacing the low-quality shots with more representative ones to adequately represent the sample collections. We formulate both problems as sparse subset selection and develop two selection algorithms to recommend appropriate learners and shots, respectively. A matrix visualization and a scatterplot are combined to explain the recommended learners and shots in context and facilitate users in adjusting them. Based on the adjustment, the algorithm updates the recommendation results for another round of improvement. Two case studies are conducted to demonstrate that FSLDiagnotor helps build a few-shot classifier efficiently and increases the accuracy by 12% and 21%, respectively.

Deep neural networks have been successfully applied to a broad range of problems where overparametrization yields weight matrices which are partially random. A comparison of weight matrix singular vectors to the Porter-Thomas distribution suggests that there is a boundary between randomness and learned information in the singular value spectrum. Inspired by this finding, we introduce an algorithm for noise filtering, which both removes small singular values and reduces the magnitude of large singular values to counteract the effect of level repulsion between the noise and the information part of the spectrum. For networks trained in the presence of label noise, we indeed find that the generalization performance improves significantly due to noise filtering.

We consider inference for a collection of partially observed, stochastic, interacting, nonlinear dynamic processes. Each process is identified with a label called its unit, and our primary motivation arises in biological metapopulation systems where a unit corresponds to a spatially distinct sub-population. Metapopulation systems are characterized by strong dependence through time within a single unit and relatively weak interactions between units, and these properties make block particle filters an effective tool for simulation-based likelihood evaluation. Iterated filtering algorithms can facilitate likelihood maximization for simulation-based filters. We introduce a new iterated block particle filter algorithm applicable when parameters are unit-specific or shared between units. We demonstrate this algorithm by performing inference on a coupled epidemiological model describing spatiotemporal measles case report data for twenty towns.

This paper presents a neural network-based Unscented Kalman Filter (UKF) to track the pose (i.e., position and orientation) of a known, noncooperative, tumbling target spacecraft in a close-proximity rendezvous scenario. The UKF estimates the relative orbital and attitude states of the target with respect to the servicer based on the pose information extracted from incoming monocular images of the target spacecraft with a Convolutional Neural Network (CNN). In order to enable reliable tracking, the process noise covariance matrix of the UKF is tuned online using adaptive state noise compensation. Specifically, the closed-form process noise model for the relative attitude dynamics is newly derived and implemented. In order to enable a comprehensive analysis of the performance and robustness of the proposed CNN-powered UKF, this paper also introduces the Satellite Hardware-In-the-loop Rendezvous Trajectories (SHIRT) dataset which comprises the labeled imagery of two representative rendezvous trajectories in low Earth orbit. For each trajectory, two sets of images are respectively created from a graphics renderer and a robotic testbed to allow testing the filter's robustness across domain gap. The proposed UKF is evaluated on both domains of the trajectories in SHIRT and is shown to have sub-decimeter-level position and degree-level orientation errors at steady-state.

Suppose we observe a random vector $X$ from some distribution $P$ in a known family with unknown parameters. We ask the following question: when is it possible to split $X$ into two parts $f(X)$ and $g(X)$ such that neither part is sufficient to reconstruct $X$ by itself, but both together can recover $X$ fully, and the joint distribution of $(f(X),g(X))$ is tractable? As one example, if $X=(X_1,\dots,X_n)$ and $P$ is a product distribution, then for any $m<n$, we can split the sample to define $f(X)=(X_1,\dots,X_m)$ and $g(X)=(X_{m+1},\dots,X_n)$. Rasines and Young (2021) offers an alternative route of accomplishing this task through randomization of $X$ with additive Gaussian noise which enables post-selection inference in finite samples for Gaussian distributed data and asymptotically for non-Gaussian additive models. In this paper, we offer a more general methodology for achieving such a split in finite samples by borrowing ideas from Bayesian inference to yield a (frequentist) solution that can be viewed as a continuous analog of data splitting. We call our method data fission, as an alternative to data splitting, data carving and p-value masking. We exemplify the method on a few prototypical applications, such as post-selection inference for trend filtering and other regression problems.

In this paper, we propose an analysis of the automorphism group of polar codes, with the scope of designing codes tailored for automorphism ensemble (AE) decoding. We prove the equivalence between the notion of decreasing monomial codes and the universal partial order (UPO) framework for the description of polar codes. Then, we analyze the algebraic properties of the affine automorphisms group of polar codes, providing a novel description of its structure and proposing a classification of automorphisms providing the same results under permutation decoding. Finally, we propose a method to list all the automorphisms that may lead to different candidates under AE decoding; by introducing the concept of redundant automorphisms, we find the maximum number of permutations providing possibly different codeword candidates under AE-SC, proposing a method to list all of them. A numerical analysis of the error correction performance of AE algorithm for the decoding of polar codes concludes the paper.

The crude Monte Carlo approximates the integral $$S(f)=\int_a^b f(x)\,\mathrm dx$$ with expected error (deviation) $\sigma(f)N^{-1/2},$ where $\sigma(f)^2$ is the variance of $f$ and $N$ is the number of random samples. If $f\in C^r$ then special variance reduction techniques can lower this error to the level $N^{-(r+1/2)}.$ In this paper, we consider methods of the form $$\overline M_{N,r}(f)=S(L_{m,r}f)+M_n(f-L_{m,r}f),$$ where $L_{m,r}$ is the piecewise polynomial interpolation of $f$ of degree $r-1$ using a partition of the interval $[a,b]$ into $m$ subintervals, $M_n$ is a Monte Carlo approximation using $n$ samples of $f,$ and $N$ is the total number of function evaluations used. We derive asymptotic error formulas for the methods $\overline M_{N,r}$ that use nonadaptive as well as adaptive partitions. Although the convergence rate $N^{-(r+1/2)}$ cannot be beaten, the asymptotic constants make a huge difference. For example, for $\int_0^1(x+d)^{-1}\mathrm dx$ and $r=4$ the best adaptive methods overcome the nonadaptive ones roughly $10^{12}$ times if $d=10^{-4},$ and $10^{29}$ times if $d=10^{-8}.$ In addition, the proposed adaptive methods are easily implementable and can be well used for automatic integration. We believe that the obtained results can be generalized to multivariate integration.

Practical data assimilation algorithms often contain hyper-parameters, which may arise due to, for instance, the use of certain auxiliary techniques like covariance inflation and localization in an ensemble Kalman filter, the re-parameterization of certain quantities such as model and/or observation error covariance matrices, and so on. Given the richness of the established assimilation algorithms, and the abundance of the approaches through which hyper-parameters are introduced to the assimilation algorithms, one may ask whether it is possible to develop a sound and generic method to efficiently choose various types of (sometimes high-dimensional) hyper-parameters. This work aims to explore a feasible, although likely partial, answer to this question. Our main idea is built upon the notion that a data assimilation algorithm with hyper-parameters can be considered as a parametric mapping that links a set of quantities of interest (e.g., model state variables and/or parameters) to a corresponding set of predicted observations in the observation space. As such, the choice of hyper-parameters can be recast as a parameter estimation problem, in which our objective is to tune the hyper-parameters in such a way that the resulted predicted observations can match the real observations to a good extent. From this perspective, we propose a hyper-parameter estimation workflow and investigate the performance of this workflow in an ensemble Kalman filter. In a series of experiments, we observe that the proposed workflow works efficiently even in the presence of a relatively large amount (up to $10^3$) of hyper-parameters, and exhibits reasonably good and consistent performance under various conditions.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.

北京阿比特科技有限公司