亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of recovering a signal $\boldsymbol{x} \in \mathbb{R}^n$ from a quadratic system $\{y_i=\boldsymbol{x}^\top\boldsymbol{A}_i\boldsymbol{x},\ i=1,\ldots,m\}$ with full-rank matrices $\boldsymbol{A}_i$ frequently arises in applications such as unassigned distance geometry and sub-wavelength imaging. With i.i.d. standard Gaussian matrices $\boldsymbol{A}_i$, this paper addresses the high-dimensional case where $m\ll n$ by incorporating prior knowledge of $\boldsymbol{x}$. First, we consider a $k$-sparse $\boldsymbol{x}$ and introduce the thresholded Wirtinger flow (TWF) algorithm that does not require the sparsity level $k$. TWF comprises two steps: the spectral initialization that identifies a point sufficiently close to $\boldsymbol{x}$ (up to a sign flip) when $m=O(k^2\log n)$, and the thresholded gradient descent (with a good initialization) that produces a sequence linearly converging to $\boldsymbol{x}$ with $m=O(k\log n)$ measurements. Second, we explore the generative prior, assuming that $\boldsymbol{x}$ lies in the range of an $L$-Lipschitz continuous generative model with $k$-dimensional inputs in an $\ell_2$-ball of radius $r$. We develop the projected gradient descent (PGD) algorithm that also comprises two steps: the projected power method that provides an initial vector with $O\big(\sqrt{\frac{k \log L}{m}}\big)$ $\ell_2$-error given $m=O(k\log(Lnr))$ measurements, and the projected gradient descent that refines the $\ell_2$-error to $O(\delta)$ at a geometric rate when $m=O(k\log\frac{Lrn}{\delta^2})$. Experimental results corroborate our theoretical findings and show that: (i) our approach for the sparse case notably outperforms the existing provable algorithm sparse power factorization; (ii) leveraging the generative prior allows for precise image recovery in the MNIST dataset from a small number of quadratic measurements.

相關內容

We prove that the blocklength $n$ of a linear $3$-query locally correctable code (LCC) $\mathcal{L} \colon {\mathbb F}^k \to {\mathbb F}^n$ with distance $\delta$ must be at least $n \geq 2^{\Omega\left(\left(\frac{\delta^2 k}{(|{\mathbb F}|-1)^2}\right)^{1/8}\right)}$. In particular, the blocklength of a linear $3$-query LCC with constant distance over any small field grows exponentially with $k$. This improves on the best prior lower bound of $n \geq \tilde{\Omega}(k^3)$ [AGKM23], which holds even for the weaker setting of $3$-query locally decodable codes (LDCs), and comes close to matching the best-known construction of $3$-query LCCs based on binary Reed-Muller codes, which achieve $n \leq 2^{O(k^{1/2})}$. Because there is a $3$-query LDC with a strictly subexponential blocklength [Yek08, Efr09], as a corollary we obtain the first strong separation between $q$-query LCCs and LDCs for any constant $q \geq 3$. Our proof is based on a new upgrade of the method of spectral refutations via Kikuchi matrices developed in recent works [GKM22, HKM23, AGKM23] that reduces establishing (non-)existence of combinatorial objects to proving unsatisfiability of associated XOR instances. Our key conceptual idea is to apply this method with XOR instances obtained via long-chain derivations, a structured variant of low-width resolution for XOR formulas from proof complexity [Gri01, Sch08].

Let $\mathcal{W} \subset \mathbb{R}^2$ be a planar polygonal environment (i.e., a polygon potentially with holes) with a total of $n$ vertices, and let $A,B$ be two robots, each modeled as an axis-aligned unit square, that can translate inside $\mathcal{W}$. Given source and target placements $s_A,t_A,s_B,t_B \in \mathcal{W}$ of $A$ and $B$, respectively, the goal is to compute a \emph{collision-free motion plan} $\mathbf{\pi}^*$, i.e., a motion plan that continuously moves $A$ from $s_A$ to $t_A$ and $B$ from $s_B$ to $t_B$ so that $A$ and $B$ remain inside $\mathcal{W}$ and do not collide with each other during the motion. Furthermore, if such a plan exists, then we wish to return a plan that minimizes the sum of the lengths of the paths traversed by the robots, $\left|\mathbf{\pi}^*\right|$. Given $\mathcal{W}, s_A,t_A,s_B,t_B$ and a parameter $\varepsilon > 0$, we present an $n^2\varepsilon^{-O(1)} \log n$-time $(1+\varepsilon)$-approximation algorithm for this problem. We are not aware of any polynomial time algorithm for this problem, nor do we know whether the problem is NP-Hard. Our result is the first polynomial-time $(1+\varepsilon)$-approximation algorithm for an optimal motion planning problem involving two robots moving in a polygonal environment.

Boolean function $F(x,y)$ for $x,y \in \{0,1\}^n$ is an XOR function if $F(x,y)=f(x\oplus y)$ for some function $f$ on $n$ input bits, where $\oplus$ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing Fourier analytic technique. For total XOR functions it is known that deterministic communication complexity of $F$ is closely related to parity decision tree complexity of $f$. Montanaro and Osbourne (2009) observed that one-sided communication complexity $D_{cc}^{\rightarrow}(F)$ of $F$ is exactly equal to nonadaptive parity decision tree complexity $NADT^{\oplus}(f)$ of $f$. Hatami et al. (2018) showed that unrestricted communication complexity of $F$ is polynomially related to parity decision tree complexity of $f$. We initiate the studies of a similar connection for partial functions. We show that in case of one-sided communication complexity whether these measures are equal, depends on the number of undefined inputs of $f$. On the one hand, if $D_{cc}^{\rightarrow}(F)=t$ and $f$ is undefined on at most $O(\frac{2^{n-t}}{\sqrt{n-t}})$, then $NADT^{\oplus}(f)=t$. On the other hand, for a wide range of values of $D_{cc}^{\rightarrow}(F)$ and $NADT^{\oplus}(f)$ (from constant to $n-2$) we provide partial functions for which $D_{cc}^{\rightarrow}(F) < NADT^{\oplus}(f)$. In particular, we provide a function with an exponential gap between the two measures. Our separation results translate to the case of two-sided communication complexity as well, in particular showing that the result of Hatami et al. (2018) cannot be generalized to partial functions. Previous results for total functions heavily rely on Boolean Fourier analysis and the technique does not translate to partial functions. For the proofs of our results we build a linear algebraic framework instead. Separation results are proved through the reduction to covering codes.

A range family $\mathcal{R}$ is a family of subsets of $\mathbb{R}^d$, like all halfplanes, or all unit disks. Given a range family $\mathcal{R}$, we consider the $m$-uniform range capturing hypergraphs $\mathcal{H}(V,\mathcal{R},m)$ whose vertex-sets $V$ are finite sets of points in $\mathbb{R}^d$ with any $m$ vertices forming a hyperedge $e$ whenever $e = V \cap R$ for some $R \in \mathcal{R}$. Given additionally an integer $k \geq 2$, we seek to find the minimum $m = m_{\mathcal{R}}(k)$ such that every $\mathcal{H}(V,\mathcal{R},m)$ admits a polychromatic $k$-coloring of its vertices, that is, where every hyperedge contains at least one point of each color. Clearly, $m_{\mathcal{R}}(k) \geq k$ and the gold standard is an upper bound $m_{\mathcal{R}}(k) = O(k)$ that is linear in $k$. A $t$-shallow hitting set in $\mathcal{H}(V,\mathcal{R},m)$ is a subset $S \subseteq V$ such that $1 \leq |e \cap S| \leq t$ for each hyperedge $e$; i.e., every hyperedge is hit at least once but at most $t$ times by $S$. We show for several range families $\mathcal{R}$ the existence of $t$-shallow hitting sets in every $\mathcal{H}(V,\mathcal{R},m)$ with $t$ being a constant only depending on $\mathcal{R}$. This in particular proves that $m_{\mathcal{R}}(k) \leq tk = O(k)$ in such cases, improving previous polynomial bounds in $k$. Particularly, we prove this for the range families of all axis-aligned strips in $\mathbb{R}^d$, all bottomless and topless rectangles in $\mathbb{R}^2$, and for all unit-height axis-aligned rectangles in $\mathbb{R}^2$.

In this paper, we consider the counting function $E_P(y) = |P_{y} \cap Z^{n_x}|$ for a parametric polyhedron $P_{y} = \{x \in R^{n_x} \colon A x \leq b + B y\}$, where $y \in R^{n_y}$. We give a new representation of $E_P(y)$, called a \emph{piece-wise step-polynomial with periodic coefficients}, which is a generalization of piece-wise step-polynomials and integer/rational Ehrhart's quasi-polynomials. It gives the fastest way to calculate $E_P(y)$ in certain scenarios. The most important cases are the following: 1) We show that, for the parametric polyhedron $P_y$ defined by a standard-form system $A x = y,\, x \geq 0$ with a fixed number of equalities, the function $E_P(y)$ can be represented by a polynomial-time computable function. In turn, such a representation of $E_P(y)$ can be constructed by an $poly\bigl(n, \|A\|_{\infty}\bigr)$-time algorithm; 2) Assuming again that the number of equalities is fixed, we show that integer/rational Ehrhart's quasi-polynomials of a polytope can be computed by FPT-algorithms, parameterized by sub-determinants of $A$ or its elements; 3) Our representation of $E_P$ is more efficient than other known approaches, if $A$ has bounded elements, especially if it is sparse in addition. Additionally, we provide a discussion about possible applications in the area of compiler optimization. In some "natural" assumptions on a program code, our approach has the fastest complexity bounds.

We consider the classical Shiryaev--Roberts martingale diffusion, $(R_t)_{t\ge0}$, restricted to the interval $[0,A]$, where $A>0$ is a preset absorbing boundary. We take yet another look at the well-known phenomenon of quasi-stationarity (time-invariant probabilistic behavior, conditional on no absorbtion hitherto) exhibited by the diffusion in the temporal limit, as $t\to+\infty$, for each $A>0$. We obtain new upper- and lower-bounds for the quasi-stationary distribution's probability density function (pdf), $q_{A}(x)$; the bounds vary in the trade-off between simplicity and tightness. The bounds imply directly the expected result that $q_{A}(x)$ converges to the pdf, $h(x)$, of the diffusion's stationary distribution, as $A\to+\infty$; the convergence is pointwise, for all $x\ge0$. The bounds also yield an explicit upperbound for the gap between $q_{A}(x)$ and $h(x)$ for a fixed $x$. By virtue of integration the bounds for the pdf $q_{A}(x)$ translate into new bounds for the corresponding cumulative distribution function (cdf), $Q_{A}(x)$. All of our results are established explicitly, using certain latest monotonicity properties of the modified Bessel $K$ function involved in the exact closed-form formula for $q_{A}(x)$ recently obtained by Polunchenko (2017). We conclude with a discussion of potential applications of our results in quickest change-point detection: our bounds allow for a very accurate performance analysis of the so-called randomized Shiryaev--Roberts--Pollak change-point detection procedure.

Given a set system $(E, \mathcal{P})$ with $\rho \in [0, 1]^E$ and $\pi \in [0,1]^{ \mathcal{P}}$, our goal is to find a probability distribution for a random set $S \subseteq E$ such that $\operatorname{Pr}[e \in S] = \rho_e$ for all $e \in E$ and $\operatorname{Pr}[P \cap S \neq \emptyset] \geq \pi_P$ for all $P \in \mathcal{P}$. We extend the results of Dahan, Amin, and Jaillet (MOR 2022) who studied this problem motivated by a security game in a directed acyclic graph (DAG). We focus on the setting where $\pi$ is of the affine form $\pi_P = 1 - \sum_{e \in P} \mu_e$ for $\mu \in [0, 1]^E$. A necessary condition for the existence of the desired distribution is that $\sum_{e \in P} \rho_e \geq \pi_P$ for all $P \in \mathcal{P}$. We show that this condition is sufficient if and only if $\mathcal{P}$ has the weak max-flow/min-cut property. We further provide an efficient combinatorial algorithm for computing the corresponding distribution in the special case where $(E, \mathcal{P})$ is an abstract network. As a consequence, equilibria for the security game by Dahan et al. can be efficiently computed in a wide variety of settings (including arbitrary digraphs). As a subroutine of our algorithm, we provide a combinatorial algorithm for computing shortest paths in abstract networks, partially answering an open question by McCormick (SODA 1996). We further show that a conservation law proposed by Dahan et al. for the requirement vector $\pi$ in DAGs can be reduced to the setting of affine requirements described above.

The Weisfeiler-Leman (WL) dimension of a graph parameter $f$ is the minimum $k$ such that, if $G_1$ and $G_2$ are indistinguishable by the $k$-dimensional WL-algorithm then $f(G_1)=f(G_2)$. The WL-dimension of $f$ is $\infty$ if no such $k$ exists. We study the WL-dimension of graph parameters characterised by the number of answers from a fixed conjunctive query to the graph. Given a conjunctive query $\varphi$, we quantify the WL-dimension of the function that maps every graph $G$ to the number of answers of $\varphi$ in $G$. The works of Dvor\'ak (J. Graph Theory 2010), Dell, Grohe, and Rattan (ICALP 2018), and Neuen (ArXiv 2023) have answered this question for full conjunctive queries, which are conjunctive queries without existentially quantified variables. For such queries $\varphi$, the WL-dimension is equal to the treewidth of the Gaifman graph of $\varphi$. In this work, we give a characterisation that applies to all conjunctive qureies. Given any conjunctive query $\varphi$, we prove that its WL-dimension is equal to the semantic extension width $\mathsf{sew}(\varphi)$, a novel width measure that can be thought of as a combination of the treewidth of $\varphi$ and its quantified star size, an invariant introduced by Durand and Mengel (ICDT 2013) describing how the existentially quantified variables of $\varphi$ are connected with the free variables. Using the recently established equivalence between the WL-algorithm and higher-order Graph Neural Networks (GNNs) due to Morris et al. (AAAI 2019), we obtain as a consequence that the function counting answers to a conjunctive query $\varphi$ cannot be computed by GNNs of order smaller than $\mathsf{sew}(\varphi)$.

This paper studies the prediction of a target $\mathbf{z}$ from a pair of random variables $(\mathbf{x},\mathbf{y})$, where the ground-truth predictor is additive $\mathbb{E}[\mathbf{z} \mid \mathbf{x},\mathbf{y}] = f_\star(\mathbf{x}) +g_{\star}(\mathbf{y})$. We study the performance of empirical risk minimization (ERM) over functions $f+g$, $f \in F$ and $g \in G$, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class $F$ is "simpler" than $G$ (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogeneous covariate shifts} in which the shift in $\mathbf{x}$ is much greater than that in $\mathbf{y}$. Our analysis proceeds by demonstrating that ERM behaves qualitatively similarly to orthogonal machine learning: the rate at which ERM recovers the $f$-component of the predictor has only a lower-order dependence on the complexity of the class $G$, adjusted for partial non-indentifiability introduced by the additive structure. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.

For a set of points in $\mathbb{R}^d$, the Euclidean $k$-means problems consists of finding $k$ centers such that the sum of distances squared from each data point to its closest center is minimized. Coresets are one the main tools developed recently to solve this problem in a big data context. They allow to compress the initial dataset while preserving its structure: running any algorithm on the coreset provides a guarantee almost equivalent to running it on the full data. In this work, we study coresets in a fully-dynamic setting: points are added and deleted with the goal to efficiently maintain a coreset with which a k-means solution can be computed. Based on an algorithm from Henzinger and Kale [ESA'20], we present an efficient and practical implementation of a fully dynamic coreset algorithm, that improves the running time by up to a factor of 20 compared to our non-optimized implementation of the algorithm by Henzinger and Kale, without sacrificing more than 7% on the quality of the k-means solution.

北京阿比特科技有限公司