亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mesh generation remains a key technology in many areas where numerical simulations are required. As numerical algorithms become more efficient and computers become more powerful, the percentage of time devoted to mesh generation becomes higher. In this paper, we present an improved structured mesh generation method. The method formulates the meshing problem as a global optimization problem related to a physics-informed neural network. The mesh is obtained by intelligently solving the physical boundary-constrained partial differential equations. To improve the prediction accuracy of the neural network, we also introduce a novel auxiliary line strategy and an efficient network model during meshing. The strategy first employs a priori auxiliary lines to provide ground truth data and then uses these data to construct a loss term to better constrain the convergence of the subsequent training. The experimental results indicate that the proposed method is effective and robust. It can accurately approximate the mapping (transformation) from the computational domain to the physical domain and enable fast high-quality structured mesh generation.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph. Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking. The current paper aims to address this gap. Formalizing strength of interactions through an established measure known as separation rank, we quantify the ability of certain GNNs to model interaction between a given subset of vertices and its complement, i.e. between sides of a given partition of input vertices. Our results reveal that the ability to model interaction is primarily determined by the partition's walk index -- a graph-theoretical characteristic that we define by the number of walks originating from the boundary of the partition. Experiments with common GNN architectures corroborate this finding. As a practical application of our theory, we design an edge sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a GNN to model interactions when input edges are removed. WIS is simple, computationally efficient, and markedly outperforms alternative methods in terms of induced prediction accuracy. More broadly, it showcases the potential of improving GNNs by theoretically analyzing the interactions they can model.

Temperature monitoring during the life time of heat source components in engineering systems becomes essential to guarantee the normal work and the working life of these components. However, prior methods, which mainly use the interpolate estimation to reconstruct the temperature field from limited monitoring points, require large amounts of temperature tensors for an accurate estimation. This may decrease the availability and reliability of the system and sharply increase the monitoring cost. To solve this problem, this work develops a novel physics-informed deep reversible regression models for temperature field reconstruction of heat-source systems (TFR-HSS), which can better reconstruct the temperature field with limited monitoring points unsupervisedly. First, we define the TFR-HSS task mathematically, and numerically model the task, and hence transform the task as an image-to-image regression problem. Then this work develops the deep reversible regression model which can better learn the physical information, especially over the boundary. Finally, considering the physical characteristics of heat conduction as well as the boundary conditions, this work proposes the physics-informed reconstruction loss including four training losses and jointly learns the deep surrogate model with these losses unsupervisedly. Experimental studies have conducted over typical two-dimensional heat-source systems to demonstrate the effectiveness of the proposed method.

Forecasting time series with extreme events has been a challenging and prevalent research topic, especially when the time series data are affected by complicated uncertain factors, such as is the case in hydrologic prediction. Diverse traditional and deep learning models have been applied to discover the nonlinear relationships and recognize the complex patterns in these types of data. However, existing methods usually ignore the negative influence of imbalanced data, or severe events, on model training. Moreover, methods are usually evaluated on a small number of generally well-behaved time series, which does not show their ability to generalize. To tackle these issues, we propose a novel probability-enhanced neural network model, called NEC+, which concurrently learns extreme and normal prediction functions and a way to choose among them via selective back propagation. We evaluate the proposed model on the difficult 3-day ahead hourly water level prediction task applied to 9 reservoirs in California. Experimental results demonstrate that the proposed model significantly outperforms state-of-the-art baselines and exhibits superior generalization ability on data with diverse distributions.

Physics-informed neural networks (PINNs) constitute a flexible approach to both finding solutions and identifying parameters of partial differential equations. Most works on the topic assume noiseless data, or data contaminated by weak Gaussian noise. We show that the standard PINN framework breaks down in case of non-Gaussian noise. We give a way of resolving this fundamental issue and we propose to jointly train an energy-based model (EBM) to learn the correct noise distribution. We illustrate the improved performance of our approach using multiple examples.

In recent years, Deep Learning has shown good results in the Single Image Superresolution Reconstruction (SISR) task, thus becoming the most widely used methods in this field. The SISR task is a typical task to solve an uncertainty problem. Therefore, it is often challenging to meet the requirements of High-quality sampling, fast Sampling, and diversity of details and texture after Sampling simultaneously in a SISR task.It leads to model collapse, lack of details and texture features after Sampling, and too long Sampling time in High Resolution (HR) image reconstruction methods. This paper proposes a Diffusion Probability model for Latent features (LDDPM) to solve these problems. Firstly, a Conditional Encoder is designed to effectively encode Low-Resolution (LR) images, thereby reducing the solution space of reconstructed images to improve the performance of reconstructed images. Then, the Normalized Flow and Multi-modal adversarial training are used to model the denoising distribution with complex Multi-modal distribution so that the Generative Modeling ability of the model can be improved with a small number of Sampling steps. Experimental results on mainstream datasets demonstrate that our proposed model reconstructs more realistic HR images and obtains better PSNR and SSIM performance compared to existing SISR tasks, thus providing a new idea for SISR tasks.

Modeling dynamics in the form of partial differential equations (PDEs) is an effectual way to understand real-world physics processes. For complex physics systems, analytical solutions are not available and numerical solutions are widely-used. However, traditional numerical algorithms are computationally expensive and challenging in handling multiphysics systems. Recently, using neural networks to solve PDEs has made significant progress, called physics-informed neural networks (PINNs). PINNs encode physical laws into neural networks and learn the continuous solutions of PDEs. For the training of PINNs, existing methods suffer from the problems of inefficiency and unstable convergence, since the PDE residuals require calculating automatic differentiation. In this paper, we propose Dynamic Mesh-based Importance Sampling (DMIS) to tackle these problems. DMIS is a novel sampling scheme based on importance sampling, which constructs a dynamic triangular mesh to estimate sample weights efficiently. DMIS has broad applicability and can be easily integrated into existing methods. The evaluation of DMIS on three widely-used benchmarks shows that DMIS improves the convergence speed and accuracy in the meantime. Especially in solving the highly nonlinear Schr\"odinger Equation, compared with state-of-the-art methods, DMIS shows up to 46% smaller root mean square error and five times faster convergence speed. Code are available at //github.com/MatrixBrain/DMIS.

The Levin method is a classical technique for evaluating oscillatory integrals that operates by solving a certain ordinary differential equation in order to construct an antiderivative of the integrand. It was long believed that the method suffers from ``low-frequency breakdown,'' meaning that the accuracy of the computed integral deteriorates when the integrand is only slowly oscillating. Recently presented experimental evidence suggests that, when a Chebyshev spectral method is used to discretize the differential equation and the resulting linear system is solved via a truncated singular value decomposition, no such phenomenon is observed. Here, we provide a proof that this is, in fact, the case, and, remarkably, our proof applies even in the presence of saddle points. We also observe that the absence of low-frequency breakdown makes the Levin method suitable for use as the basis of an adaptive integration method. We describe extensive numerical experiments demonstrating that the resulting adaptive Levin method can efficiently and accurately evaluate a large class of oscillatory integrals, including many with saddle points.

Weak supervision (WS) is a rich set of techniques that produce pseudolabels by aggregating easily obtained but potentially noisy label estimates from a variety of sources. WS is theoretically well understood for binary classification, where simple approaches enable consistent estimation of pseudolabel noise rates. Using this result, it has been shown that downstream models trained on the pseudolabels have generalization guarantees nearly identical to those trained on clean labels. While this is exciting, users often wish to use WS for structured prediction, where the output space consists of more than a binary or multi-class label set: e.g. rankings, graphs, manifolds, and more. Do the favorable theoretical properties of WS for binary classification lift to this setting? We answer this question in the affirmative for a wide range of scenarios. For labels taking values in a finite metric space, we introduce techniques new to weak supervision based on pseudo-Euclidean embeddings and tensor decompositions, providing a nearly-consistent noise rate estimator. For labels in constant-curvature Riemannian manifolds, we introduce new invariants that also yield consistent noise rate estimation. In both cases, when using the resulting pseudolabels in concert with a flexible downstream model, we obtain generalization guarantees nearly identical to those for models trained on clean data. Several of our results, which can be viewed as robustness guarantees in structured prediction with noisy labels, may be of independent interest. Empirical evaluation validates our claims and shows the merits of the proposed method.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

北京阿比特科技有限公司