亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neuromorphic computing leverages the sparsity of temporal data to reduce processing energy by activating a small subset of neurons and synapses at each time step. When deployed for split computing in edge-based systems, remote neuromorphic processing units (NPUs) can reduce the communication power budget by communicating asynchronously using sparse impulse radio (IR) waveforms. This way, the input signal sparsity translates directly into energy savings both in terms of computation and communication. However, with IR transmission, the main contributor to the overall energy consumption remains the power required to maintain the main radio on. This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs. A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making. To address this problem, as a second contribution, this work proposes a novel methodology that leverages the use of a digital twin (DT), i.e., a simulator, of the physical system, coupled with a sequential statistical testing approach known as Learn Then Test (LTT) to provide theoretical reliability guarantees. The proposed DT-LTT methodology is broadly applicable to other design problems, and is showcased here for neuromorphic communications. Experimental results validate the design and the analysis, confirming the theoretical reliability guarantees and illustrating trade-offs among reliability, energy consumption, and informativeness of the decisions.

相關內容

The spatiotemporal data generated by massive sensors in the Internet of Things (IoT) is extremely dynamic, heterogeneous, large scale and time-dependent. It poses great challenges (e.g. accuracy, reliability, and stability) in real-time analysis and decision making for different IoT applications. The complexity of IoT data prevents the common people from gaining a deeper understanding of it. Agentized systems help address the lack of data insight for the common people. We propose a generic framework, namely CityGPT, to facilitate the learning and analysis of IoT time series with an end-to-end paradigm. CityGPT employs three agents to accomplish the spatiotemporal analysis of IoT data. The requirement agent facilitates user inputs based on natural language. Then, the analysis tasks are decomposed into temporal and spatial analysis processes, completed by corresponding data analysis agents (temporal and spatial agents). Finally, the spatiotemporal fusion agent visualizes the system's analysis results by receiving analysis results from data analysis agents and invoking sub-visualization agents, and can provide corresponding textual descriptions based on user demands. To increase the insight for common people using our framework, we have agnentized the framework, facilitated by a large language model (LLM), to increase the data comprehensibility. Our evaluation results on real-world data with different time dependencies show that the CityGPT framework can guarantee robust performance in IoT computing.

Multiplex graphs, characterised by their layered structure, exhibit informative interdependencies within layers that are crucial for understanding complex network dynamics. Quantifying the interaction and shared information among these layers is challenging due to the non-Euclidean structure of graphs. Our paper introduces a comprehensive theory of multivariate information measures for multiplex graphs. We introduce graphon mutual information for pairs of graphs and expand this to graphon interaction information for three or more graphs, including their conditional variants. We then define graphon total correlation and graphon dual total correlation, along with their conditional forms, and introduce graphon $O-$information. We discuss and quantify the concepts of synergy and redundancy in graphs for the first time, introduce consistent nonparametric estimators for these multivariate graphon information--theoretic measures, and provide their convergence rates. We also conduct a simulation study to illustrate our theoretical findings and demonstrate the relationship between the introduced measures, multiplex graph structure, and higher--order interdependecies. Real-world applications further show the utility of our estimators in revealing shared information and dependence structures in real-world multiplex graphs. This work not only answers fundamental questions about information sharing across multiple graphs but also sets the stage for advanced pattern analysis in complex networks.

The shift from a linear to a circular economy has the potential to simultaneously reduce uncertainties of material supplies and waste generation. To date, the development of robotic and, more generally, autonomous systems have been rarely integrated into circular economy implementation strategies. In this review, we merge deep-learning vision, compartmental dynamical thermodynamics, and robotic manipulation into a theoretically-coherent physics-based research framework to lay the foundations of circular flow designs of materials, and hence, to speed-up the transition from linearity to circularity. Then, we discuss opportunities for robotics in circular economy.

Space robotics poses unique challenges arising from the limitation of energy and computational resources, and the complexity of the environment and employed platforms. At the control center, offline motion planning is fundamental in the computation of optimized trajectories accounting for the system's constraints. Smooth movements, collision and forbidden areas avoidance, target visibility and energy consumption are all important factors to consider to be able to generate feasible and optimal plans. When mobile manipulators (terrestrial, aerial) are employed, the base and the arm movements are often separately planned, ultimately resulting in sub-optimal solutions. We propose an Optimal Whole Body Planner (OptiWB) based on Discrete Dynamic Programming (DDP) and optimal interpolation. Kinematic redundancy is exploited for collision and forbidden areas avoidance, and to improve target illumination and visibility from onboard cameras. The planner, implemented in ROS (Robot Operating System), interfaces 3DROCS, a mission planner used in several programs of the European Space Agency (ESA) to support planetary exploration surface missions and part of the ExoMars Rover's planning software. The proposed approach is exercised on a simplified version of the Analog-1 Interact rover by ESA, a 7-DOFs robotic arm mounted on a four wheels non-holonomic platform.

We study the matrix denoising problem of estimating the singular vectors of a rank-$1$ signal corrupted by noise with both column and row correlations. Existing works are either unable to pinpoint the exact asymptotic estimation error or, when they do so, the resulting approaches (e.g., based on whitening or singular value shrinkage) remain vastly suboptimal. On top of this, most of the literature has focused on the special case of estimating the left singular vector of the signal when the noise only possesses row correlation (one-sided heteroscedasticity). In contrast, our work establishes the information-theoretic and algorithmic limits of matrix denoising with doubly heteroscedastic noise. We characterize the exact asymptotic minimum mean square error, and design a novel spectral estimator with rigorous optimality guarantees: under a technical condition, it attains positive correlation with the signals whenever information-theoretically possible and, for one-sided heteroscedasticity, it also achieves the Bayes-optimal error. Numerical experiments demonstrate the significant advantage of our theoretically principled method with the state of the art. The proofs draw connections with statistical physics and approximate message passing, departing drastically from standard random matrix theory techniques.

Advancements in machine learning and an abundance of structural monitoring data have inspired the integration of mechanical models with probabilistic models to identify a structure's state and quantify the uncertainty of its physical parameters and response. In this paper, we propose an inference methodology for classical Kirchhoff-Love plates via physics-informed Gaussian Processes (GP). A probabilistic model is formulated as a multi-output GP by placing a GP prior on the deflection and deriving the covariance function using the linear differential operators of the plate governing equations. The posteriors of the flexural rigidity, hyperparameters, and plate response are inferred in a Bayesian manner using Markov chain Monte Carlo (MCMC) sampling from noisy measurements. We demonstrate the applicability with two examples: a simply supported plate subjected to a sinusoidal load and a fixed plate subjected to a uniform load. The results illustrate how the proposed methodology can be employed to perform stochastic inference for plate rigidity and physical quantities by integrating measurements from various sensor types and qualities. Potential applications of the presented methodology are in structural health monitoring and uncertainty quantification of plate-like structures.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司