亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Smart medical devices are an integral component of the healthcare Internet of Things (IoT), providing patients with various healthcare services through an IoT-based application. Ensuring the dependability of such applications through system and integration-level testing mandates the physical integration of numerous medical devices, which is costly and impractical. In this context, digital twins of medical devices play an essential role in facilitating testing automation. Testing with digital twins without accounting for uncertain environmental factors of medical devices leaves many functionalities of IoT-based healthcare applications untested. In addition, digital twins operating without environmental factors remain out of sync and uncalibrated with their corresponding devices functioning in the real environment. To deal with these challenges, in this paper, we propose a model-based approach (EnvDT) for modeling and simulating the environment of medical devices' digital twins under uncertainties. We empirically evaluate the EnvDT using three medicine dispensers, Karie, Medido, and Pilly connected to a real-world IoT-based healthcare application. Our evaluation targets analyzing the coverage of environment models and the diversity of uncertain scenarios generated for digital twins. Results show that EnvDT achieves approximately 61% coverage of environment models and generates diverse uncertain scenarios (with a near-maximum diversity value of 0.62) during multiple environmental simulations.

相關內容

Synthesizing medical images while preserving their structural information is crucial in medical research. In such scenarios, the preservation of anatomical content becomes especially important. Although recent advances have been made by incorporating instance-level information to guide translation, these methods overlook the spatial coherence of structural-level representation and the anatomical invariance of content during translation. To address these issues, we introduce hierarchical granularity discrimination, which exploits various levels of semantic information present in medical images. Our strategy utilizes three levels of discrimination granularity: pixel-level discrimination using a Brain Memory Bank, structure-level discrimination on each brain structure with a re-weighting strategy to focus on hard samples, and global-level discrimination to ensure anatomical consistency during translation. The image translation performance of our strategy has been evaluated on three independent datasets (UK Biobank, IXI, and BraTS 2018), and it has outperformed state-of-the-art algorithms. Particularly, our model excels not only in synthesizing normal structures but also in handling abnormal (pathological) structures, such as brain tumors, despite the variations in contrast observed across different imaging modalities due to their pathological characteristics. The diagnostic value of synthesized MR images containing brain tumors has been evaluated by radiologists. This indicates that our model may offer an alternative solution in scenarios where specific MR modalities of patients are unavailable. Extensive experiments further demonstrate the versatility of our method, providing unique insights into medical image translation.

Antepartum Cardiotocography (CTG) is vital for fetal health monitoring, but traditional methods like the Dawes-Redman system are often limited by high inter-observer variability, leading to inconsistent interpretations and potential misdiagnoses. This paper introduces PatchCTG, a transformer-based model specifically designed for CTG analysis, employing patch-based tokenisation, instance normalisation and channel-independent processing to capture essential local and global temporal dependencies within CTG signals. PatchCTG was evaluated on the Oxford Maternity (OXMAT) dataset, comprising over 20,000 CTG traces across diverse clinical outcomes after applying the inclusion and exclusion criteria. With extensive hyperparameter optimisation, PatchCTG achieved an AUC of 77%, with specificity of 88% and sensitivity of 57% at Youden's index threshold, demonstrating adaptability to various clinical needs. Testing across varying temporal thresholds showed robust predictive performance, particularly with finetuning on data closer to delivery, achieving a sensitivity of 52% and specificity of 88% for near-delivery cases. These findings suggest the potential of PatchCTG to enhance clinical decision-making in antepartum care by providing a reliable, objective tool for fetal health assessment. The source code is available at //github.com/jaleedkhan/PatchCTG.

Large language models (LLMs) have shown promise in safety-critical applications such as healthcare, yet the ability to quantify performance has lagged. An example of this challenge is in evaluating a summary of the patient's medical record. A resulting summary can enable the provider to get a high-level overview of the patient's health status quickly. Yet, a summary that omits important facts about the patient's record can produce a misleading picture. This can lead to negative consequences on medical decision-making. We propose MED-OMIT as a metric to explore this challenge. We focus on using provider-patient history conversations to generate a subjective (a summary of the patient's history) as a case study. We begin by discretizing facts from the dialogue and identifying which are omitted from the subjective. To determine which facts are clinically relevant, we measure the importance of each fact to a simulated differential diagnosis. We compare MED-OMIT's performance to that of clinical experts and find broad agreement We use MED-OMIT to evaluate LLM performance on subjective generation and find some LLMs (gpt-4 and llama-3.1-405b) work well with little effort, while others (e.g. Llama 2) perform worse.

By leveraging the representation power of deep neural networks, neural upper confidence bound (UCB) algorithms have shown success in contextual bandits. To further balance the exploration and exploitation, we propose Neural-$\sigma^2$-LinearUCB, a variance-aware algorithm that utilizes $\sigma^2_t$, i.e., an upper bound of the reward noise variance at round $t$, to enhance the uncertainty quantification quality of the UCB, resulting in a regret performance improvement. We provide an oracle version for our algorithm characterized by an oracle variance upper bound $\sigma^2_t$ and a practical version with a novel estimation for this variance bound. Theoretically, we provide rigorous regret analysis for both versions and prove that our oracle algorithm achieves a better regret guarantee than other neural-UCB algorithms in the neural contextual bandits setting. Empirically, our practical method enjoys a similar computational efficiency, while outperforming state-of-the-art techniques by having a better calibration and lower regret across multiple standard settings, including on the synthetic, UCI, MNIST, and CIFAR-10 datasets.

Positron Emission Tomography (PET) is a vital imaging modality widely used in clinical diagnosis and preclinical research but faces limitations in image resolution and signal-to-noise ratio due to inherent physical degradation factors. Current deep learning-based denoising methods face challenges in adapting to the variability of clinical settings, influenced by factors such as scanner types, tracer choices, dose levels, and acquisition times. In this work, we proposed a novel 3D ControlNet-based denoising method for whole-body PET imaging. We first pre-trained a 3D Denoising Diffusion Probabilistic Model (DDPM) using a large dataset of high-quality normal-dose PET images. Following this, we fine-tuned the model on a smaller set of paired low- and normal-dose PET images, integrating low-dose inputs through a 3D ControlNet architecture, thereby making the model adaptable to denoising tasks in diverse clinical settings. Experimental results based on clinical PET datasets show that the proposed framework outperformed other state-of-the-art PET image denoising methods both in visual quality and quantitative metrics. This plug-and-play approach allows large diffusion models to be fine-tuned and adapted to PET images from diverse acquisition protocols.

Over several decades, electromechanical impedance (EMI) measurements have been employed as a basis for structural health monitoring and damage detection. Traditionally, Root-mean-squared-deviation (RMSD) and Cross-correlation (XCORR) based metrics have been used to interpret EMI measurements for damage assessment. These tools, although helpful and widely used, were not designed with the idea to assess changes in EMI to underlying physical changes incurred by damage. The authors propose leveraging vector fitting (VF), a rational function approximation technique, to estimate the poles of the underlying system, and consequently, the modal parameters which have a physical connection to the underlying model of a system. Shifts in natural frequencies, as an effect of changes in the pole location, can be attributed to changes in a structure undergoing damage. With VF, tracking changes between measurements of damaged and pristine structures is physically more intuitive unlike when using traditional metrics, making it ideal for informed post-processing. Alternative methods to VF exist in the literature (e.g., Least Square Complex Frequency-domain (LSCF) estimation, adaptive Antoulas--Anderson (AAA), Rational Krylov Fitting (RKFIT)). The authors demonstrate that VF is better suited for EMI-based structural health monitoring for the following reasons: 1. VF is more accurate at high frequency, 2. VF estimates complex conjugate stable pole pairs, close to the actual poles of the system, and 3. VF can capture critical information missed by other approaches and present it in a condensed form. Thus, using the selected technique for interpreting high-frequency EMI measurements for structural health monitoring is proposed. A set of representative case studies is presented to show the benefits of VF for damage detection and diagnosis.

Graph neural networks (GNNs) are effective machine learning models for many graph-related applications. Despite their empirical success, many research efforts focus on the theoretical limitations of GNNs, i.e., the GNNs expressive power. Early works in this domain mainly focus on studying the graph isomorphism recognition ability of GNNs, and recent works try to leverage the properties such as subgraph counting and connectivity learning to characterize the expressive power of GNNs, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for models for enhancing expressive power under different forms of definition. Concretely, the models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司