亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Process tomography, the experimental characterization of physical processes, is a central task in science and engineering. Here we investigate the axiomatic requirements that guarantee the in-principle feasibility of process tomography in general physical theories. Specifically, we explore the requirement that process tomography should be achievable with a finite number of auxiliary systems and with a finite number of input states. We show that this requirement is satisfied in every theory equipped with universal extensions, that is, correlated states from which all other correlations can be generated locally with non-zero probability. We show that universal extensions are guaranteed to exist in two cases: (1) theories permitting conclusive state teleportation, and (2) theories satisfying three properties of Causality, Pure Product States, and Purification. In case (2), the existence of universal extensions follows from a symmetry property of Purification, whereby all pure bipartite states with the same marginal on one system are locally interconvertible. Crucially, our results hold even in theories that do not satisfy Local Tomography, the property that the state of any composite system can be identified from the correlations of local measurements. Summarizing, the existence of universal extensions, without any additional requirement of Local Tomography, is a sufficient guarantee for the characterizability of physical processes using a finite number of auxiliary systems.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

We consider the problem of efficiently solving large-scale linear least squares problems that have one or more linear constraints that must be satisfied exactly. Whilst some classical approaches are theoretically well founded, they can face difficulties when the matrix of constraints contains dense rows or if an algorithmic transformation used in the solution process results in a modified problem that is much denser than the original one. To address this, we propose modifications and new ideas, with an emphasis on requiring the constraints are satisfied with a small residual. We examine combining the null-space method with our recently developed algorithm for computing a null space basis matrix for a "wide" matrix. We further show that a direct elimination approach enhanced by careful pivoting can be effective in transforming the problem to an unconstrained sparse-dense least squares problem that can be solved with existing direct or iterative methods. We also present a number of solution variants that employ an augmented system formulation, which can be attractive when solving a sequence of related problems. Numerical experiments using problems coming from practical applications are used throughout to demonstrate the effectiveness of the different approaches.

Statistical inverse learning theory, a field that lies at the intersection of inverse problems and statistical learning, has lately gained more and more attention. In an effort to steer this interplay more towards the variational regularization framework, convergence rates have recently been proved for a class of convex, $p$-homogeneous regularizers with $p \in (1,2]$, in the symmetric Bregman distance. Following this path, we take a further step towards the study of sparsity-promoting regularization and extend the aforementioned convergence rates to work with $\ell^p$-norm regularization, with $p \in (1,2)$, for a special class of non-tight Banach frames, called shearlets, and possibly constrained to some convex set. The $p = 1$ case is approached as the limit case $(1,2) \ni p \rightarrow 1$, by complementing numerical evidence with a (partial) theoretical analysis, based on arguments from $\Gamma$-convergence theory. We numerically demonstrate our theoretical results in the context of X-ray tomography, under random sampling of the imaging angles, using both simulated and measured data.

Relying on random matrix theory (RMT), this paper studies asymmetric order-$d$ spiked tensor models with Gaussian noise. Using the variational definition of the singular vectors and values of [Lim, 2005], we show that the analysis of the considered model boils down to the analysis of an equivalent spiked symmetric \textit{block-wise} random matrix, that is constructed from \textit{contractions} of the studied tensor with the singular vectors associated to its best rank-1 approximation. Our approach allows the exact characterization of the almost sure asymptotic singular value and alignments of the corresponding singular vectors with the true spike components, when $\frac{n_i}{\sum_{j=1}^d n_j}\to c_i\in [0, 1]$ with $n_i$'s the tensor dimensions. In contrast to other works that rely mostly on tools from statistical physics to study random tensors, our results rely solely on classical RMT tools such as Stein's lemma. Finally, classical RMT results concerning spiked random matrices are recovered as a particular case.

Multivariate Analysis (MVA) comprises a family of well-known methods for feature extraction which exploit correlations among input variables representing the data. One important property that is enjoyed by most such methods is uncorrelation among the extracted features. Recently, regularized versions of MVA methods have appeared in the literature, mainly with the goal to gain interpretability of the solution. In these cases, the solutions can no longer be obtained in a closed manner, and more complex optimization methods that rely on the iteration of two steps are frequently used. This paper recurs to an alternative approach to solve efficiently this iterative problem. The main novelty of this approach lies in preserving several properties of the original methods, most notably the uncorrelation of the extracted features. Under this framework, we propose a novel method that takes advantage of the l-21 norm to perform variable selection during the feature extraction process. Experimental results over different problems corroborate the advantages of the proposed formulation in comparison to state of the art formulations.

Adapting a definition given by Bjerkevik and Lesnick for multiparameter persistence modules, we introduce an $\ell^p$-type extension of the interleaving distance on merge trees. We show that our distance is a metric, and that it upper-bounds the $p$-Wasserstein distance between the associated barcodes. For each $p\in[1,\infty]$, we prove that this distance is stable with respect to cellular sublevel filtrations and that it is the universal (i.e., largest) distance satisfying this stability property. In the $p=\infty$ case, this gives a novel proof of universality for the interleaving distance on merge trees.

Forming a high-quality molecular candidate set that contains a wide range of dissimilar compounds is crucial to the success of drug discovery. However, comparing to the research aiming at optimizing chemical properties, how to measure and improve the variety of drug candidates is relatively understudied. In this paper, we first investigate the problem of properly measuring the molecular variety through both an axiomatic analysis framework and an empirical study. Our analysis suggests that many existing measures are not suitable for evaluating the variety of molecules. We also propose new variety measures based on our analysis. We further explicitly integrate the proposed variety measures into the optimization objective of molecular generation models. Our experiment results demonstrate that this new optimization objective can guide molecular generation models to find compounds that cover a lager chemical space, providing the downstream phases with more distinctive drug candidate choices.

In recent years, several results in the supervised learning setting suggested that classical statistical learning-theoretic measures, such as VC dimension, do not adequately explain the performance of deep learning models which prompted a slew of work in the infinite-width and iteration regimes. However, there is little theoretical explanation for the success of neural networks beyond the supervised setting. In this paper we argue that, under some distributional assumptions, classical learning-theoretic measures can sufficiently explain generalization for graph neural networks in the transductive setting. In particular, we provide a rigorous analysis of the performance of neural networks in the context of transductive inference, specifically by analysing the generalisation properties of graph convolutional networks for the problem of node classification. While VC Dimension does result in trivial generalisation error bounds in this setting as well, we show that transductive Rademacher complexity can explain the generalisation properties of graph convolutional networks for stochastic block models. We further use the generalisation error bounds based on transductive Rademacher complexity to demonstrate the role of graph convolutions and network architectures in achieving smaller generalisation error and provide insights into when the graph structure can help in learning. The findings of this paper could re-new the interest in studying generalisation in neural networks in terms of learning-theoretic measures, albeit in specific problems.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

Deep Learning is applied to energy markets to predict extreme loads observed in energy grids. Forecasting energy loads and prices is challenging due to sharp peaks and troughs that arise due to supply and demand fluctuations from intraday system constraints. We propose deep spatio-temporal models and extreme value theory (EVT) to capture theses effects and in particular the tail behavior of load spikes. Deep LSTM architectures with ReLU and $\tanh$ activation functions can model trends and temporal dependencies while EVT captures highly volatile load spikes above a pre-specified threshold. To illustrate our methodology, we use hourly price and demand data from 4719 nodes of the PJM interconnection, and we construct a deep predictor. We show that DL-EVT outperforms traditional Fourier time series methods, both in-and out-of-sample, by capturing the observed nonlinearities in prices. Finally, we conclude with directions for future research.

We reinterpreting the variational inference in a new perspective. Via this way, we can easily prove that EM algorithm, VAE, GAN, AAE, ALI(BiGAN) are all special cases of variational inference. The proof also reveals the loss of standard GAN is incomplete and it explains why we need to train GAN cautiously. From that, we find out a regularization term to improve stability of GAN training.

北京阿比特科技有限公司