亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

What happens when an infinite number of players play a quantum game? In this paper, we will answer this question by looking at the emergence of cooperation in the presence of noise in a one-shot quantum Prisoner's dilemma (QuPD). We will use the numerical Agent-based model (ABM) and compare it with the analytical Nash equilibrium mapping (NEM) technique. To measure cooperation, we consider five indicators, i.e., game magnetization, entanglement susceptibility, correlation, player's payoff average, and payoff capacity, respectively. In quantum social dilemmas, entanglement plays a non-trivial role in determining the players' behavior in the thermodynamic limit, and we consider the existence of bipartite entanglement between neighboring players. For the five indicators in question, we observe \textit{first}-order phase transitions at two entanglement values, and these phase transition points depend on the payoffs associated with the QuPD game. We numerically analyze and study the properties of both the \textit{Quantum} and the \textit{Defect} phases of the QuPD via the five indicators. The results of this paper demonstrate that both ABM and NEM, in conjunction with the chosen five indicators, provide insightful information on cooperative behavior in the thermodynamic limit of the one-shot quantum Prisoner's dilemma.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · Agent · 大語言模型 · Extensibility ·
2024 年 5 月 17 日

In recent years, Large Language Models (LLMs) have shown great abilities in various tasks, including question answering, arithmetic problem solving, and poem writing, among others. Although research on LLM-as-an-agent has shown that LLM can be applied to Reinforcement Learning (RL) and achieve decent results, the extension of LLM-based RL to Multi-Agent System (MAS) is not trivial, as many aspects, such as coordination and communication between agents, are not considered in the RL frameworks of a single agent. To inspire more research on LLM-based MARL, in this letter, we survey the existing LLM-based single-agent and multi-agent RL frameworks and provide potential research directions for future research. In particular, we focus on the cooperative tasks of multiple agents with a common goal and communication among them. We also consider human-in/on-the-loop scenarios enabled by the language component in the framework.

Though feature-alignment based Domain Adaptive Object Detection (DAOD) methods have achieved remarkable progress, they ignore the source bias issue, i.e., the detector tends to acquire more source-specific knowledge, impeding its generalization capabilities in the target domain. Furthermore, these methods face a more formidable challenge in achieving consistent classification and localization in the target domain compared to the source domain. To overcome these challenges, we propose a novel Distillation-based Source Debiasing (DSD) framework for DAOD, which can distill domain-agnostic knowledge from a pre-trained teacher model, improving the detector's performance on both domains. In addition, we design a Target-Relevant Object Localization Network (TROLN), which can mine target-related localization information from source and target-style mixed data. Accordingly, we present a Domain-aware Consistency Enhancing (DCE) strategy, in which these information are formulated into a new localization representation to further refine classification scores in the testing stage, achieving a harmonization between classification and localization. Extensive experiments have been conducted to manifest the effectiveness of this method, which consistently improves the strong baseline by large margins, outperforming existing alignment-based works.

With the recent surge in popularity of LLMs has come an ever-increasing need for LLM safety training. In this paper, we investigate the fragility of SOTA open-source LLMs under simple, optimization-free attacks we refer to as $\textit{priming attacks}$, which are easy to execute and effectively bypass alignment from safety training. Our proposed attack improves the Attack Success Rate on Harmful Behaviors, as measured by Llama Guard, by up to $3.3\times$ compared to baselines. Source code and data are available at //github.com/uiuc-focal-lab/llm-priming-attacks.

In this paper, we investigate a reconfigurable intelligent surface (RIS)-aided multiple-input single-output (MISO) system in the presence of electromagnetic interference (EMI) and channel aging with a Rician fading channel model between the base station (BS) and user equipment (UE). Specifically, we derive the closed-form expression for downlink spectral efficiency (SE) with maximum ratio transmission (MRT) precoding. The Monte-Carlo simulation supports the theoretical results, demonstrating that amplifying the weight of the line-of-sight (LoS) component in Rician fading channels can boost SE, while EMI has a detrimental impact. Furthermore, continuously increasing the number of RIS elements is not an optimal choice when EMI exists. Nonetheless, RIS can be deployed to compensate for SE degradation caused by channel aging effects. Finally, enlarging the RIS elements size can significantly improve system performance.

How can we probabilistically predict the winner in a ranked-choice election without all ballots being counted? In this study, we introduce a novel algorithm designed to predict outcomes in Instant Runoff Voting (IRV) elections. The algorithm takes as input a set of discrete probability distributions describing vote totals for each candidate ranking and calculates the probability that each candidate will win the election. In fact, we calculate all possible sequences of eliminations that might occur in the IRV rounds and assign a probability to each. The discrete probability distributions can be arbitrary and, in applications, could be measured empirically from pre-election polling data or from partial vote tallies of an in-progress election. The algorithm is effective for elections with a small number of candidates (five or fewer), with fast execution on typical consumer computers. The run-time is short enough for our method to be used for real-time election night modeling where new predictions are made continuously as more and more vote information becomes available. We demonstrate the algorithm in abstract examples, and also using real data from the 2022 Alaska state elections to simulate election-night predictions and also predictions of election recounts.

In this work, we introduce a novel method for calculating the 6DoF pose of an object using a single RGB-D image. Unlike existing methods that either directly predict objects' poses or rely on sparse keypoints for pose recovery, our approach addresses this challenging task using dense correspondence, i.e., we regress the object coordinates for each visible pixel. Our method leverages existing object detection methods. We incorporate a re-projection mechanism to adjust the camera's intrinsic matrix to accommodate cropping in RGB-D images. Moreover, we transform the 3D object coordinates into a residual representation, which can effectively reduce the output space and yield superior performance. We conducted extensive experiments to validate the efficacy of our approach for 6D pose estimation. Our approach outperforms most previous methods, especially in occlusion scenarios, and demonstrates notable improvements over the state-of-the-art methods. Our code is available on //github.com/AI-Application-and-Integration-Lab/RDPN6D.

Concerns have arisen regarding the unregulated utilization of artificial intelligence (AI) outputs, potentially leading to various societal issues. While humans routinely validate information, manually inspecting the vast volumes of AI-generated results is impractical. Therefore, automation and visualization are imperative. In this context, Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users. Simultaneously, software auto-tuning (AT) technology has emerged, aiming to reduce the man-hours required for performance tuning in numerical calculations. AT is a potent tool for cost reduction during parameter optimization and high-performance programming for numerical computing. The synergy between AT mechanisms and AI technology is noteworthy, with AI finding extensive applications in AT. However, applying AI to AT mechanisms introduces challenges in AI model explainability. This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations: performance parameter tuning of accuracy-guaranteed numerical calculations and sparse iterative algorithm.

In this paper, we explore a forward-thinking question: Is GPT-4V effective at low-level data analysis tasks on charts? To this end, we first curate a large-scale dataset, named ChartInsights, consisting of 89,388 quartets (chart, task, question, answer) and covering 10 widely-used low-level data analysis tasks on 7 chart types. Firstly, we conduct systematic evaluations to understand the capabilities and limitations of 18 advanced MLLMs, which include 12 open-source models and 6 closed-source models. Starting with a standard textual prompt approach, the average accuracy rate across the 18 MLLMs is 36.17%. Among all the models, GPT-4V achieves the highest accuracy, reaching 56.13%. To understand the limitations of multimodal large models in low-level data analysis tasks, we have designed various experiments to conduct an in-depth test of capabilities of GPT-4V. We further investigate how visual modifications to charts, such as altering visual elements (e.g. changing color schemes) and introducing perturbations (e.g. adding image noise), affect performance of GPT-4V. Secondly, we present 12 experimental findings. These findings suggest potential of GPT-4V to revolutionize interaction with charts and uncover the gap between human analytic needs and capabilities of GPT-4V. Thirdly, we propose a novel textual prompt strategy, named Chain-of-Charts, tailored for low-level analysis tasks, which boosts model performance by 24.36%, resulting in an accuracy of 80.49%. Furthermore, by incorporating a visual prompt strategy that directs attention of GPT-4V to question-relevant visual elements, we further improve accuracy to 83.83%. Our study not only sheds light on the capabilities and limitations of GPT-4V in low-level data analysis tasks but also offers valuable insights for future research.

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).

北京阿比特科技有限公司