亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A good theory of mathematical beauty is more practical than any current observation, as new predictions of physical reality can be verified self-consistently. This belief applies to the current status of understanding deep neural networks including large language models and even the biological intelligence. Toy models provide a metaphor of physical reality, allowing mathematically formulating that reality (i.e., the so-called theory), which can be updated as more conjectures are justified or refuted. One does not need to pack all details into a model, but rather, more abstract models are constructed, as complex systems like brains or deep networks have many sloppy dimensions but much less stiff dimensions that strongly impact macroscopic observables. This kind of bottom-up mechanistic modeling is still promising in the modern era of understanding the natural or artificial intelligence. Here, we shed light on eight challenges in developing theory of intelligence following this theoretical paradigm.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Processing(編程語言) · Principle · 統計量 · 可理解性 ·
2023 年 8 月 10 日

Temporal irreversibility, often referred to as the arrow of time, is a fundamental concept in statistical mechanics. Markers of irreversibility also provide a powerful characterisation of information processing in biological systems. However, current approaches tend to describe temporal irreversibility in terms of a single scalar quantity, without disentangling the underlying dynamics that contribute to irreversibility. Here we propose a broadly applicable information-theoretic framework to characterise the arrow of time in multivariate time series, which yields qualitatively different types of irreversible information dynamics. This multidimensional characterisation reveals previously unreported high-order modes of irreversibility, and establishes a formal connection between recent heuristic markers of temporal irreversibility and metrics of information processing. We demonstrate the prevalence of high-order irreversibility in the hyperactive regime of a biophysical model of brain dynamics, showing that our framework is both theoretically principled and empirically useful. This work challenges the view of the arrow of time as a monolithic entity, enhancing both our theoretical understanding of irreversibility and our ability to detect it in practical applications.

In novelty detection, the objective is to determine whether the test sample contains any outliers, using a sample of controls (inliers). This involves many-to-one comparisons of individual test points against the control sample. A recent approach applies the Benjamini-Hochberg procedure to the conformal $p$-values resulting from these comparisons, ensuring false discovery rate control. In this paper, we suggest using Wilcoxon-Mann-Whitney tests for the comparisons and subsequently applying the closed testing principle to derive post-hoc confidence bounds for the number of outliers in any subset of the test sample. We revisit an elegant result that under a nonparametric alternative known as Lehmann's alternative, Wilcoxon-Mann-Whitney is locally most powerful among rank tests. By combining this result with a simple observation, we demonstrate that the proposed procedure is more powerful for the null hypothesis of no outliers than the Benjamini-Hochberg procedure applied to conformal $p$-values.

In human-AI collaboration systems for critical applications, in order to ensure minimal error, users should set an operating point based on model confidence to determine when the decision should be delegated to human experts. Samples for which model confidence is lower than the operating point would be manually analysed by experts to avoid mistakes. Such systems can become truly useful only if they consider two aspects: models should be confident only for samples for which they are accurate, and the number of samples delegated to experts should be minimized. The latter aspect is especially crucial for applications where available expert time is limited and expensive, such as healthcare. The trade-off between the model accuracy and the number of samples delegated to experts can be represented by a curve that is similar to an ROC curve, which we refer to as confidence operating characteristic (COC) curve. In this paper, we argue that deep neural networks should be trained by taking into account both accuracy and expert load and, to that end, propose a new complementary loss function for classification that maximizes the area under this COC curve. This promotes simultaneously the increase in network accuracy and the reduction in number of samples delegated to humans. We perform experiments on multiple computer vision and medical image datasets for classification. Our results demonstrate that the proposed loss improves classification accuracy and delegates less number of decisions to experts, achieves better out-of-distribution samples detection and on par calibration performance compared to existing loss functions.

We consider the problem of estimating the roughness of the volatility in a stochastic volatility model that arises as a nonlinear function of fractional Brownian motion with drift. To this end, we introduce a new estimator that measures the so-called roughness exponent of a continuous trajectory, based on discrete observations of its antiderivative. We provide conditions on the underlying trajectory under which our estimator converges in a strictly pathwise sense. Then we verify that these conditions are satisfied by almost every sample path of fractional Brownian motion (with drift). As a consequence, we obtain strong consistency theorems in the context of a large class of rough volatility models. Numerical simulations show that our estimation procedure performs well after passing to a scale-invariant modification of our estimator.

A variant of the standard notion of branching bisimilarity for processes with discrete relative timing is proposed which is coarser than the standard notion. Using a version of ACP (Algebra of Communicating Processes) with abstraction for processes with discrete relative timing, it is shown that the proposed variant allows of both the functional correctness and the performance properties of the PAR (Positive Acknowledgement with Retransmission) protocol to be analyzed. In the version of ACP concerned, the difference between the standard notion of branching bisimilarity and its proposed variant is characterized by a single axiom schema.

Despite its importance for insurance, there is almost no literature on statistical hail damage modeling. Statistical models for hailstorms exist, though they are generally not open-source, but no study appears to have developed a stochastic hail impact function. In this paper, we use hail-related insurance claim data to build a Gaussian line process with extreme marks to model both the geographical footprint of a hailstorm and the damage to buildings that hailstones can cause. We build a model for the claim counts and claim values, and compare it to the use of a benchmark deterministic hail impact function. Our model proves to be better than the benchmark at capturing hail spatial patterns and allows for localized and extreme damage, which is seen in the insurance data. The evaluation of both the claim counts and value predictions shows that performance is improved compared to the benchmark, especially for extreme damage. Our model appears to be the first to provide realistic estimates for hail damage to individual buildings.

Compared to widely used likelihood-based approaches, the minimum contrast (MC) method is a computationally efficient method for estimation and inference of parametric stationary point processes. This advantage becomes more pronounced when analyzing complex point process models, such as multivariate log-Gaussian Cox processes (LGCP). Despite its practical advantages, there is very little work on the MC method for multivariate point processes. The aim of this article is to introduce a new MC method for parametric multivariate stationary spatial point processes. A contrast function is calculated based on the trace of the power of the difference between the conjectured $K$-function matrix and its nonparametric unbiased edge-corrected estimator. Under standard assumptions, the asymptotic normality of the MC estimator of the model parameters is derived. The performance of the proposed method is illustrated with bivariate LGCP simulations and a real data analysis of a bivariate point pattern of the 2014 terrorist attacks in Nigeria.

Personalized recommendations form an important part of today's internet ecosystem, helping artists and creators to reach interested users, and helping users to discover new and engaging content. However, many users today are skeptical of platforms that personalize recommendations, in part due to historically careless treatment of personal data and data privacy. Now, businesses that rely on personalized recommendations are entering a new paradigm, where many of their systems must be overhauled to be privacy-first. In this article, we propose an algorithm for personalized recommendations that facilitates both precise and differentially-private measurement. We consider advertising as an example application, and conduct offline experiments to quantify how the proposed privacy-preserving algorithm affects key metrics related to user experience, advertiser value, and platform revenue compared to the extremes of both (private) non-personalized and non-private, personalized implementations.

Stochastic inversion problems are typically encountered when it is wanted to quantify the uncertainty affecting the inputs of computer models. They consist in estimating input distributions from noisy, observable outputs, and such problems are increasingly examined in Bayesian contexts where the targeted inputs are affected by stochastic uncertainties. In this regard, a stochastic input can be qualified as meaningful if it explains most of the output uncertainty. While such inverse problems are characterized by identifiability conditions, constraints of "signal to noise", that can formalize this meaningfulness, should be accounted for within the definition of the model, prior to inference. This article investigates the possibility of forcing a solution to be meaningful in the context of parametric uncertainty quantification, through the tools of global sensitivity analysis and information theory (variance, entropy, Fisher information). Such forcings have mainly the nature of constraints placed on the input covariance, and can be made explicit by considering linear or linearizable models. Simulated experiments indicate that, when injected into the modeling process, these constraints can limit the influence of measurement or process noise on the estimation of the input distribution, and let hope for future extensions in a full non-linear framework, for example through the use of linear Gaussian mixtures.

This article study the average conditioning for a random underdetermined polynomial system. The expected value of the moments of the condition number are compared to the moments of the condition number of random matrices. An expression for these moments is given by studying the kernel finding problem for random matrices. Furthermore, the second moment of the Frobenius condition number is computed.

北京阿比特科技有限公司