We consider the Cauchy problem for the Helmholtz equation with a domain in R^d, d>2 with N cylindrical outlets to infinity with bounded inclusions in R^{d-1}. Cauchy data are prescribed on the boundary of the bounded domains and the aim is to find solution on the unbounded part of the boundary. In 1989, Kozlov and Maz'ya proposed an alternating iterative method for solving Cauchy problems associated with elliptic,self-adjoint and positive-definite operators in bounded domains. Different variants of this method for solving Cauchy problems associated with Helmholtz-type operators exists. We consider the variant proposed by Mpinganzima et al. for bounded domains and derive the necessary conditions for the convergence of the procedure in unbounded domains. For the numerical implementation, a finite difference method is used to solve the problem in a simple rectangular domain in R^2 that represent a truncated infinite strip. The numerical results shows that by appropriate truncation of the domain and with appropriate choice of the Robin parameters, the Robin-Dirichlet alternating iterative procedure is convergent.
The main goal of this thesis is to show the crucial role that plays the symbol in analysing the spectrum the sequence of matrices resulting from PDE approximation and in designing a fast method to solve the associated linear problem. In the first part, we study the spectral properties of the matrices arising from $\mathbb{P}_k$ Lagrangian Finite Elements approximation of second order elliptic differential problem with Dirichlet boundary conditions and where the operator is $\mathrm{div} \left(-a(\mathbf{x}) \nabla\cdot\right)$, with $a$ continuous and positive over $\overline \Omega$, $\Omega$ being an open and bounded subset of $\mathbb{R}^d$, $d\ge 1$. We investigate the spectral distribution in the Weyl sense, with a concise overview on localization, clustering, extremal eigenvalues, and asymptotic conditioning. We study in detail the case of constant coefficients on $\Omega=(0,1)^2$ and we give a brief account in the case of variable coefficients and more general domains. While in the second part, we design a fast method of multigrid type for the resolution of linear systems arising from the $\mathbb{Q}_k$ Finite Elements approximation of the same considered problem in one and higher dimensional. The analysis is performed in one dimension, while the numerics are carried out also in higher dimension $d\ge 2$, demonstrating an optimal behavior in terms of the dependency on the matrix size and a robustness with respect to the dimensionality $d$ and to the polynomial degree $k$.
We describe some pseudorandom properties of binary linear codes achieving capacity on the binary erasure channel under bit-MAP decoding (as shown in Kudekar et al this includes doubly transitive codes and, in particular, Reed-Muller codes). We show that for all integer $q \ge 2$ the $\ell_q$ norm of the characteristic function of such 'pseudorandom' code decreases as fast as that of any code of the same rate (and equally fast as that of a random code) under the action of the noise operator. In information-theoretic terms this means that the $q^{th}$ R\'enyi entropy of this code increases as fast as possible over the binary symmetric channel. In particular (taking $q = \infty$) this shows that such codes have the smallest asymptotic undetected error probability (equal to that of a random code) over the BSC, for a certain range of parameters. We also study the number of times a certain local pattern, a 'rhombic' $4$-tuple of codewords, appears in a linear code, and show that for a certain range of parameters this number for pseudorandom codes is similar to that for a random code.
We develop a spectral method to solve the heat equation in a closed cylinder, achieving a near-optimal $\mathcal{O}(N\log N)$ complexity and high-order, \emph{spectral} accuracy. The algorithm relies on a novel Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method, which improves the complexity of each solve from cubic in the matrix size (in more traditional methods) to log-linear; overall, this represents an improvement in the heat equation solver from $\mathcal{O}(N^{7/3})$ (in traditional methods) to $\mathcal{O}(N\log N)$. Lastly, we provide numerical simulations demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods, and we provide a framework by which this heat equation solver could be applied to the incompressible Navier--Stokes equations. For the latter, we decompose the equations using a poloidal--toroidal (PT) decomposition, turning them into heat equations with nonlinear forcing from the advection term; by using implicit--explicit methods to integrate these, we can achieve the same $\mathcal{O}(N\log N)$ complexity and spectral accuracy achieved here in the heat equation.
Modern software systems and products increasingly rely on machine learning models to make data-driven decisions based on interactions with users, infrastructure and other systems. For broader adoption, this practice must (i) accommodate product engineers without ML backgrounds, (ii) support finegrain product-metric evaluation and (iii) optimize for product goals. To address shortcomings of prior platforms, we introduce general principles for and the architecture of an ML platform, Looper, with simple APIs for decision-making and feedback collection. Looper covers the end-to-end ML lifecycle from collecting training data and model training to deployment and inference, and extends support to personalization, causal evaluation with heterogenous treatment effects, and Bayesian tuning for product goals. During the 2021 production deployment Looper simultaneously hosted 440-1,000 ML models that made 4-6 million real-time decisions per second. We sum up experiences of platform adopters and describe their learning curve.
We study \textit{rescaled gradient dynamical systems} in a Hilbert space $\mathcal{H}$, where the implicit discretization in a finite-dimensional Euclidean space leads to high-order methods for solving monotone equations (MEs). Our framework generalizes the celebrated dual extrapolation method~\citep{Nesterov-2007-Dual} from first order to high order via appeal to the regularization toolbox of optimization theory~\citep{Nesterov-2021-Implementable, Nesterov-2021-Inexact}. We establish the existence and uniqueness of a global solution and analyze the convergence properties of solution trajectories. We also present discrete-time counterparts of our high-order continuous-time methods, and we show that the $p^{th}$-order method achieves an ergodic rate of $O(k^{-(p+1)/2})$ in terms of a restricted merit function and a pointwise rate of $O(k^{-p/2})$ in terms of a residue function. Under regularity conditions, the restarted version of $p^{th}$-order methods achieves local convergence with the order $p \geq 2$.
The method of choice for integrating the time-dependent Fokker-Planck equation in high-dimension is to generate samples from the solution via integration of the associated stochastic differential equation. Here, we introduce an alternative scheme based on integrating an ordinary differential equation that describes the flow of probability. Unlike the stochastic dynamics, this equation deterministically pushes samples from the initial density onto samples from the solution at any later time. The method has the advantage of giving direct access to quantities that are challenging to estimate only given samples from the solution, such as the probability current, the density itself, and its entropy. The probability flow equation depends on the gradient of the logarithm of the solution (its "score"), and so is a-priori unknown. To resolve this dependence, we model the score with a deep neural network that is learned on-the-fly by propagating a set of particles according to the instantaneous probability current. Our approach is based on recent advances in score-based diffusion for generative modeling, with the important difference that the training procedure is self-contained and does not require samples from the target density to be available beforehand. To demonstrate the validity of the approach, we consider several examples from the physics of interacting particle systems; we find that the method scales well to high-dimensional systems, and accurately matches available analytical solutions and moments computed via Monte-Carlo.
We propose a fourth-order unfitted characteristic finite element method to solve the advection-diffusion equation on time-varying domains. Based on a characteristic-Galerkin formulation, our method combines the cubic MARS method for interface tracking, the fourth-order backward differentiation formula for temporal integration, and an unfitted finite element method for spatial discretization. Our convergence analysis includes errors of discretely representing the moving boundary, tracing boundary markers, and the spatial discretization and the temporal integration of the governing equation. Numerical experiments are performed on a rotating domain and a severely deformed domain to verify our theoretical results and to demonstrate the optimal convergence of the proposed method.
In this paper, we are concerned with the numerical solution for the two-dimensional time fractional Fokker-Planck equation with tempered fractional derivative of order $\alpha$. Although some of its variants are considered in many recent numerical analysis papers, there are still some significant differences. Here we first provide the regularity estimates of the solution. And then a modified $L$1 scheme inspired by the middle rectangle quadrature formula on graded meshes is employed to compensate for the singularity of the solution at $t\rightarrow 0^{+}$, while the five-point difference scheme is used in space. Stability and convergence are proved in the sence of $L^{\infty}$ norm, then a sharp error estimate $\mathscr{O}(\tau^{\min\{2-\alpha, r\alpha\}})$ is derived on graded meshes. Furthermore, unlike the bounds proved in the previous works, the constant multipliers in our analysis do not blow up as the Caputo fractional derivative $\alpha$ approaches the classical value of 1. Finally, we perform the numerical experiments to verify the effectiveness and convergence order of the presented algorithms.
This paper is concerned with online filtering of discretely observed nonlinear diffusion processes. Our approach is based on the fully adapted auxiliary particle filter, which involves Doob's $h$-transforms that are typically intractable. We propose a computational framework to approximate these $h$-transforms by solving the underlying backward Kolmogorov equations using nonlinear Feynman-Kac formulas and neural networks. The methodology allows one to train a locally optimal particle filter prior to the data-assimilation procedure. Numerical experiments illustrate that the proposed approach can be orders of magnitude more efficient than the bootstrap particle filter in the regime of highly informative observations, when the observations are extreme under the model, and if the state dimension is large.
Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with a very high number of supports. The m-OT solves several smaller optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, the m-OT does not consider the relationship between mini-batches which leads to undesirable estimation. Moreover, the m-OT does not approximate a proper metric between probability measures since the identity property is not satisfied. To address these problems, we propose a novel mini-batch scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that finds the optimal coupling between mini-batches and it can be seen as an approximation to a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the BoMb-OT when the regularized parameter goes to infinity. Finally, we carry out experiments on various applications including deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow to show that the BoMb-OT can be widely applied and performs well in various applications.